Skip to main content

Role of Structures on Thermal Conductivity in Thermoelectric Materials

  • Conference paper
Properties and Applications of Thermoelectric Materials

The figure of merit ZT = σα2T/γ (α the Seebeck coefficient, σ and γ the electrical and thermal conductivity, respectively) is an essential element of the efficiency of a thermoelectric material for applications, which convert heat to electricity or, conversely, electric current to cooling. From the expression of the power factor, σα2, it was deduced that a highly degenerated semiconductor is necessary. In order to reduce the lattice part of the thermal conductivity, various mechanisms, mainly related to the structure of the materials, were tested in new thermoelectric materials and had been the topics of different reviews. These include cage-like materials, effects of vacancies, solid solutions, complex structures (cluster, tunnel,…), nano-structured systems. We plan to review structural aspects in the modern thermoelectric materials and to include results of the very recent years. Moreover, as micro- and nano-composites seem to be promising to increase ZT in large size samples, we will also briefly discuss the interest of spark plasma sintering technique to preserve the micro- or nano-structure in highly densified samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles B.: Lattice thermal conductivity of disordered semiconductor alloys at high temperature, Phys. Rev. 131, 1906 (1963)

    Article  ADS  Google Scholar 

  2. Anno H., Nagamoto Y., Ashida K., et al.: Effect of Yb filling on thermoelectric properties of Co1-xMxSb3 (M = Pd,Pt) skutterudites, 19th International Conference on Thermoelectrics, Cardiff, Wales, UK, 20–24 Aug., p. 90 (2000)

    Google Scholar 

  3. Anno, H., Nagao, J. and Matsubara, K.: Electronic and thermoelectric properties of YbyFe4-xNixSb12, 21st International Conference on Thermoelectrics, Long Beach, CA, 25–29 Aug., p. 56 (2002)

    Google Scholar 

  4. Anno H., Hokazono M., Kawamura M., et al.: Thermoelectric properties of Ba8GaxGe46-x clathrate compounds, 21st International Conference on Thermoelectrics, Long Beach, CA, 25–29 Aug., p. 77 (2002)

    Google Scholar 

  5. Bentien A., Paschen S., Pachero V., et al.: High temperature thermoelectric properties of alpha and beta-Eu8Ga16Ge30, 22nd International Conference on Thermoelectrics ICT2003, La Grand Motte, France, Aug., p. 131 (2003)

    Google Scholar 

  6. Bérardan D., Godart C., Alleno E., et al.: Chemical properties and thermopower of the new series of skutterudite Ce1-pYbpFe4Sb12, J. Alloys Compd. 351, 18–23 (2003)

    Article  Google Scholar 

  7. Bérardan D., Alleno E., Godart C., et al.: Improved thermoelectric properties in the double filled (Ce,Yb)y(Fe,Co,Ni)4Sb12 skutterudites, J. Appl. Phys. 98, 033710 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Bérardan D., Alleno E., Godart C., et al.: Synthesis of nanocrystalline filled skutterudites by mechanical alloying, 24th International Conference on Thermoelectrics ICT2006,Vienna, Austria, 6–10 Aug., p. 151 (2006)

    Google Scholar 

  9. Berger S., Paul C., Bauer E., et al.: Physical properties of novel thermoelectric skutteru-dites EuyFe4-xCoxSb12 and EuyFe4-xNixSb12, 20th International Conference on Thermo-electrics, Beijing, China, 8–11 June, p. 77 (2001)

    Google Scholar 

  10. Bilc D. I., Mahanti S. D., Kyratsi T., Chung D. Y., Kanatzidis M. G. and Larson P.: Electronic structure of K2Bi8Se13, Phys. Rev. B 71, 085116 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Blake N. P., Bryan J. D., Latturner S., et al.: Structure and stability of the clathrates Ba8Ga16Ge30, Sr8Ga16Ge30, Ba8Ga16Si30, and Ba8In16Sn30, J. Chem. Phys. 114, 10063 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Brown S. R., Kauzlarich S. M., Gascoin F., et al.: Yb14MnSb11: New high efficiency thermoelectric material for power generation, Chem. Mater. 18, 1873 (2006)

    Article  CAS  Google Scholar 

  13. Caillat, T., Fleurial, J. P. and Borshchevsky, A.: Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids 58, 1119 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Caillat, T., Fleurial, J. P. and Snyder, G. J.: Potential of Chevrel phases for thermoelectric applications, Solid State Sci. 1, 535–544 (1999)

    Article  Google Scholar 

  15. Caillat, T., Borshchevsky, A. and Fleurial, J. P.: High performance thermoelectric materials based on beta Zn4Sb3, Report NPO19851, JPL, Pasadena, CA (1999)

    Google Scholar 

  16. Caillat T., Kisor A., Lara L., et al.: Progress Status of Skutterudite-Based Segmented Thermoelectric Technology Development, 23rd International Conference on Thermoelectrics, Adelaide, Australia, 25–29 July, (2004)

    Google Scholar 

  17. Callaway, J. and von Baeyer, H. C.: Effect of point imperfections on lattice thermal conductivity, Phys. Rev. 120, 1149 (1960)

    Article  MATH  ADS  CAS  Google Scholar 

  18. Candolfi, C.: Synthèse, caractérisation physico-chimique et propriétés de transport de com-posés de type Mo3Sb7, Thesis University of Nancy, France, Oct. 6 (2008)

    Google Scholar 

  19. Chakoumakos B. C., Sales B. C., Mandrus D., et al.: Disparate atomic displacements in skut-terudite type LaFe3CoSb12, a model for thermoelectric behaviour, Acta Crystallogr. 55, 341 (1999)

    Article  Google Scholar 

  20. Chakoumakos, B. C., Mandrus, D. and Sales, B. C.: Structural disorder and magnetism of the semiconducting clathrate Eu8Ga16Ge30, J. Alloys Compd. 322, 127 (2000)

    Article  Google Scholar 

  21. Chen B., Xu J. H., Uher C., et al.: Low temperature transport properties of the filled skutteru-dites CeFe4-xCoxSb12, Phys. Rev. B 55, 1476 (1997)

    Article  ADS  CAS  Google Scholar 

  22. Chen L. D., Kawahara T., Tang X. F., et al.: Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12, J. Appl. Phys. 90, 1864 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Chen L. D., Huang X. Y., Zhou M., et al.: The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions, J. Appl. Phys. 99, 064305 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Chung D. Y., Hogan T. P., Brazis P., et al.: CsBi4Te6: a high performance thermoelectric material for low temperature applications, Science 287, 1024 (2000)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Condron C. L., Kauzlarich S. M., Gascoin F., et al.: Thermoelectric properties and microstruc-ture of Mg3Sb2, J. Solid State Chem. 179, 2252 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Deng S., Tang X., Zhang Q.: Synthesis and thermoelectric properties of p-type Ba8Ga16ZnxGe30-x type-I clathrates, J. Appl. Phys. 102, 043702 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Dresselhaus M. S., Dresselhaus G., Sun X., et al.: Low-dimensional thermoelectric materials, Phys. Solid State 41, 679 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Dyck J. S., Chen W., Uher C., et al.: Thermoelectric properties of the n-type filled skutterudite BaO.3Co4Sb12, J. Appl. Phys. 91, 3698 (2002)

    Article  ADS  CAS  Google Scholar 

  29. Fedorov M. I., Pshenaj-Severin D. A., Zaitsev V. K., et al.: Features of conduction mechanism in n-type Mg2Si1-xSnx solid solutions, 22nd International Conference on Thermoelectrics ICT2003, La Grand Motte, France, Aug., p. 142 (2003)

    Google Scholar 

  30. Fleurial J. P., Borshchevsky A., Caillat T., et al.: High figure of merit in Ce filled skutterudites, 15th International Conference on Thermoelectrics, Pasadena, CA, 26–29 March, pp. 91–95 (1996)

    Google Scholar 

  31. Fleurial, J. P., Caillat, T. and Borshchevsky, A.: Skutterudites: an update, 16th International Conference on Thermoelectrics, Dresden, Germany, 26–29 Aug., pp. 1–11 (1997)

    Google Scholar 

  32. Gascoin, F., Rasmussen, J. and Snyder, G. J.: High temperature thermoelectric properties of Mo3Sb7-xTex x = 1.6 and 1.5, J. Alloys Compd. 427, 324 (2007)

    Article  CAS  Google Scholar 

  33. Gougeon, P., Potel, M. and Gautier, R.: Syntheses and structural, physical, and theoretical studies of the novel isostructural Mo9 cluster compounds Ag2.6CsMo9Se11, Ag4.1ClMo9Se11, and h-Mo9Se11 with tunnel structures, Inorg. Chem. 43, 1257 (2004)

    Article  PubMed  CAS  Google Scholar 

  34. Grin, Y.N.: Chemistry and physics of intermetallic clathrates, 14th International Conference on Solids Compounds of Transition Elements, Linz, Austria, 6–11 July (2003)

    Google Scholar 

  35. He, T., Krajewski, J. J. and Subramanian, M. A.: High performance thermoelectric materials and their method of preparation, US Patent, US 2005/0229963 A1 (2005)

    Google Scholar 

  36. He T., Chen J., Rosenfeld H. D., et al.: Thermoelectric properties of indium filled skutteru-dites, Chem. Mater. 18, 759 (2006)

    Article  CAS  Google Scholar 

  37. Hébert S., Flahaut D., Pelloquin D., et al.: Cobalt oxides as potential thermoelectric elements: the influence of the dimensionality, 22nd International Conference on Thermoelectrics ICT2003, La Grand Motte, France, Aug., p. 161 (2003)

    Google Scholar 

  38. Hicks L. D. and Dresselhaus M. S.: Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  CAS  Google Scholar 

  39. Hicks L. D., Harman T. C., Sun X., et al.: Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 53, R10493 (1996)

    Article  ADS  CAS  Google Scholar 

  40. Hong, S. J. and Chun, B. S.: Microstructure and thermoelectric properties of extruded n-type (Bi2Te3-Bi2Se3) alloy along bar length, Mater. Sci. Eng., A 356, 345 (2003)

    Article  CAS  Google Scholar 

  41. Hsu K. F., Loo S. L., Guo F., W., et al.: Cubic AgPbmSbTe2 + m: bulk thermoelectric materials with high figure of merit, Science 303, 818 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  42. Jeitschko, W. and Braun, D. J.: LaFe4P12 with filled CoAs type structure and isotypic LnxMyPz., Acta Crystallogr. 33, 3401 (1977)

    Article  Google Scholar 

  43. Jodin L., Tobola J., Pecheur P., et al.: Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations, Phys. Rev. B 70, 184207 (2004)

    Article  ADS  CAS  Google Scholar 

  44. Kaspar, J. S., et al.: Intermetallic clathrates, Science 150, 1713 (1965)

    Article  ADS  Google Scholar 

  45. Katsuyama S., Schichijo Y., Ito M., et al.: Thermoelectric properties of the skutterudite Co1-xFexSb3 system, J. Appl. Phys. 84, 6708 (1998)

    Article  ADS  CAS  Google Scholar 

  46. Katsuyama S., Kanayama T., Ito M., et al.: Thermoelectric properties of CoSb3 with dispersed FeSb2 particles, J. Appl. Phys. 88, 3484 (2000)

    Article  ADS  CAS  Google Scholar 

  47. Katsuyama S., Watanabe M., Kuroki M., et al.: Effect of NiSb on the thermoelectric properties of skutterudite CoSb3, J. Appl. Phys. 93, 2758 (2003)

    Article  ADS  CAS  Google Scholar 

  48. Klemens, P. G.: Thermal resistance due to point defects at high temperature, Phys. Rev. 119, 507 (1960)

    Article  ADS  CAS  Google Scholar 

  49. Koumoto, K., Terasaki, I. and Funahashi, R.: Complex oxide materials for potential thermoelectric applications, MRS Bull. 31, 206 (2006)

    CAS  Google Scholar 

  50. Kurosaki K., Kosuga A., Muta H., et al.: Ag9TlTe5: a high performance thermoelectric bulk material with extremely low thermal conductivity, Appl. Phys. Lett. 87, 061919 (2005)

    Article  ADS  CAS  Google Scholar 

  51. Kuwahara H., Hirobe Y., Nagayama J., et al.: Thermoelectric properties of filling controlled manganites, J. Magn. Magn. Mater. 272–276, e1393 (2004)

    Article  CAS  Google Scholar 

  52. Kuznetsov V. L., Kuznetsova L. A. and Rowe D. M.: Effect of partial void filling on the transport properties of NdxCo4Sb12 skutterudites, J. Phys.: Condens. Matter 15, 5035 (2003)

    Article  ADS  CAS  Google Scholar 

  53. Lamberton G. A., Bhattacharya S., Littleton R. T., et al.: High figure of merit in Eu filled CoSb3 based skutterudites, Appl. Phys. Lett. 80, 598 (2002)

    Article  ADS  CAS  Google Scholar 

  54. Leithe-Jasper A., Schnelle W., Rosner H., et al.: Ferromagnetic ordering in alkali-metal iron antimonides: NaFe4Sb12 and KFe4Sb12, Phys. Rev. Lett. 91, 037208 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  55. Lin H., Bozin E. S., Billinge S. J. L., et al.: Nanoscale clusters in the high performance thermoelectric AgPbmSbTem + 2, Phys. Rev. B 72, 174113 (2005)

    Article  ADS  CAS  Google Scholar 

  56. Masset A. C., Michel C., Maignan A., et al.: Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9, Phys. Rev. B 62, 166 (2000)

    Article  ADS  CAS  Google Scholar 

  57. Mastronardi K., Young D., Wang C. C., et al.: Antimonides with the half-Heusler structure: new thermoelectric materials, Appl. Phys. Lett. 74, 1415 (1999)

    Article  ADS  CAS  Google Scholar 

  58. McGuire M. A., Schmidt A. M., Gascoin F., et al.: Thermoelectric and structural properties of a new Chevrel phase: Ti0.3Mo5RuSe8, J. Solid State Chem. (2006)

    Google Scholar 

  59. Mikami M. and Kobayashi K.: Effect of Bi addition on microstructure and thermoelectric properties of Heusler Fe2VAl sintered alloy, J. Alloys Compd. 466, 530–534 (2008)

    Article  CAS  Google Scholar 

  60. Mudryk Y., Rogl P., Paul C., et al.: Thermoelectricity of clathrate I type Si- and Ge-phases, J. Phys., Condens. Matter 14, 7991–8004 (2002)

    Article  ADS  CAS  Google Scholar 

  61. Nagamoto, Y., Tanaka, K. and Koyanagi, T.: Transport properties of heavily doped n-type CoSb3, 17th International Conference on Thermoelectrics, Nagoya, Japan, 24–28 May, p. 302 (1998)

    Google Scholar 

  62. Ni H. L., Zhao X. B., Zhu T. J., et al.: Synthesis and thermoelectric properties of Bi2Te3 based nanocomposites, J. Alloys Compd. 397, 317 (2005)

    Article  CAS  Google Scholar 

  63. Nolas, G. S., Cohn, J. L. and Slack, G. A.: Effect of partial voigt filling on the lattice thermal conductivity of skutterudites, Phys. Rev. B 58, 164 (1998)

    Article  ADS  CAS  Google Scholar 

  64. Nolas G. S., Cohn J. L., Slack G. A., et al.: Semiconducting Ge clathrates: promising for thermoelectric applications, Appl. Phys. Lett. 73, 178 (1998)

    Article  ADS  CAS  Google Scholar 

  65. Nolas G. S., Kaeser M., Littleton R. T., et al.: Partially filled skutterudites — optimizing the thermoelectric properties, MRS Spring Meeting, Boston, MA, April 626, p. Z10.1.1 (2000)

    Google Scholar 

  66. Oestreich J., Probst U., Richardt F., et al.: Thermoelectric properties of the compounds ScMSb and YMSb (M = Ni, Pd, Pt), J. Phys. Condens. Matter 15, 635 (2003)

    Article  ADS  CAS  Google Scholar 

  67. Ono Y., Satoh K., Nozaki T., et al.: Structural, magnetic and thermoelectric properties of Delafossite type oxide CuCr1-xMgxO2, 24th International Conference on Thermoelectrics ICT2006, Vienna, Austria, 6–10 Aug., (2006)

    Google Scholar 

  68. Orikasa Y., Hayashi N. and Muranaka S.: Effects of oxygen gas pressure on structural, electrical, and thermoelectric properties of (ZnO)3In2O3 thin films deposited by rf magnetron sputtering, J. Appl. Phys. 103, 113703 (2008)

    Article  ADS  CAS  Google Scholar 

  69. Peltier, J. C.: Mémoire sur la formation des tables des rapports qu'il y a entre la force d'un courant électrique et la déviation des aiguilles des multiplicateurs; suivi de recherches sur les causes de pertubation des couples thermo-électriques et sur les moyens de s'en garantir dans leur emploi a la mesure des températures moyennes, Ann. Chim. (Paris) 1, 371 (1834)

    Google Scholar 

  70. Potel M., Gougeon P., Merdrignac-Conanec O., et al.:, Meeting of the French GDR “Thermoélectricité”, Juillet, Paris (2008)

    Google Scholar 

  71. Puyet M., Dauscher A., Lenoir B., et al.: Beneficial effect of Ni substitution on the thermoelectric properties in partially filled CayCo4—xNixSb12 skutterudites, J. Appl. Phys. 97, 083712 (2005)

    Article  ADS  CAS  Google Scholar 

  72. Sales, B. C., Mandrus, D. and Williams, R. K.: Filled skutterudite antimonides: a new class of thermoelectric materials, Science 272, 1325 (1996)

    Article  PubMed  ADS  CAS  Google Scholar 

  73. Sales B. C., Mandrus D., Chakoumakos B. C., et al.: Filled skutterudite antimonides: electron crystals and phonon glasses, Phys. Rev. B 56, 15081 (1997)

    Article  ADS  CAS  Google Scholar 

  74. Sales B. C., Chakoumakos B. C., Mandrus D., et al.: Atomic displacement parameters and the lattice thermal conductivity of clathrate like thermoelectric compounds, J. Solid State Chem. 146, 528 (1999)

    Article  ADS  CAS  Google Scholar 

  75. Sales, B. C., Chakoumakos, B. C. and Mandrus, D.: Thermoelectric properties of thallium filled skutterudites, Phys. Rev. B 61, 2475 (2000)

    Article  ADS  CAS  Google Scholar 

  76. Sales, B. C., Chakoumakos, B. C. and Mandrus, D.: Connections between crystallographic data and new thermoelectric compounds, MRS Spring Meeting, Boston, MA, April 626, p. Z7.1.1 (2000)

    Google Scholar 

  77. Schmidt A. M., McGuire M. A., Gascoin F., et al.: Synthesis and thermoelectric properties of (CuyMo6Se8)1-x(Mo4Ru2Se8)x(CuyMo6Se8)1-x(Mo4Ru2Se8)x alloys, J. Alloys Compd. 431, 262 (2007)

    Article  CAS  Google Scholar 

  78. Schweika W., Hermann R. P., Prager M., et al.: Dumbbell rattling in thermoelectric zinc antimony, Phys. Rev. Lett. 99, 125501 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  79. Seebeck, T. J.: Magnetisch polarisation der metalle und erze durch temperatur differenz, Abh. Akad. Wiss. Berlin, 1820–1821, pp. 289–346 (1822)

    Google Scholar 

  80. Sharp J. W., Sales B. C., Mandrus D., et al.: Thermoelectric properties of Tl2SnTe5 and Tl2GeTe5, Appl. Phys. Lett. 74, 3794 (1999)

    Article  ADS  CAS  Google Scholar 

  81. Shi X., Chen L., Yang J., et al.: Enhanced thermoelectric figure of merit of CoSb3 via large defect scattering, Appl. Phys. Lett. 84, 2301 (2004)

    Article  ADS  CAS  Google Scholar 

  82. Shutoh, N. and Sakurada, S.: Thermoelectric properties of Tix(Zr,Hf)1-xNiSn half Heusler compounds, 22nd International Conference on Thermoelectrics ICT2003, La Grand Motte, France, Aug., p. 312 (2003)

    Google Scholar 

  83. Slack, G. A. and Tsoukala, V. G.: Some properties of semiconducting IrSb3, J. Appl. Phys. 76, 1665 (1994)

    Article  ADS  CAS  Google Scholar 

  84. Slack G.A., Thermoelectric Handbook, Ed. Rowe D.M., Chemical Rubber, Boca Raton, FL, p. 407 (1995)

    Google Scholar 

  85. Snyder G. J., Christensen M., Nishibori E., et al.: Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nature Mater. 3, 458 (2004)

    Article  ADS  CAS  Google Scholar 

  86. Stark, D. and Snyder, G. J.: The synthesis of CaZn2Sb2 and its thermoelectric properties, 21st International Conference on Thermoelectrics, Long Beach, CA, 25–29 Aug., p. 181 (2002)

    Google Scholar 

  87. Tanaka Y., Ifuku T., Tsuchida K., et al.: Thermoelectric properties of ZnO based materials, J. Mater. Sci. Lett. 16, 155 (1997)

    Article  CAS  Google Scholar 

  88. Tang X., Chen L., Goto T., Hirai T.: Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co rich CeyFexCo4-xSb12, Journal of Materials Research, 16, 3, 837 (2001)

    ADS  Google Scholar 

  89. Terasaki, I., Sasago, Y. and Uchinokura, K.: Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56, 12685 (1997)

    Article  ADS  Google Scholar 

  90. Thompson, W.: On the dynamical theory of heat. Part VI. Thermoelectric Currents., Proceedings of the Royal Society of Edinburgh 91, (1851)

    Google Scholar 

  91. Venkatasubramanian R., Sivola E., Colpitts T., et al.: Thin film thermoelectric devices with high room temperature figures of merit, Nature 413, 597 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  92. Wang, S., Snyder, G. J. and Caillat, T.: Thermoelectric properties of Nb3SbxTe7-x, 21st International Conference on Thermoelectrics, Long Beach, CA, 25–29 Aug., p. 170 (2002)

    Google Scholar 

  93. Wojciechowski K. T., Malecki A., Leszczynski J., et al.: Physical properties of Te doped CoSb3, 6th Europ. Workshop on Thermoelectrics, Freiberg im Breisgau, Austria, 20–21 Sept. (2001)

    Google Scholar 

  94. Wolfing B., Kloc C., Teubner J., et al.: High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity, Phys. Rev. Lett. 86, 4350 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  95. Worlock J. M.: Thermal conductivity in sodium chloride containing silver colloids, Phys. Rev. 147, 636 (1966)

    Article  ADS  CAS  Google Scholar 

  96. Yamashita, O., Tomiyoshi, S. and Makita, K.: Bismuth telluride compounds with high thermoelectric figures of merit, J. Appl. Phys. 93, 368 (2003)

    Article  ADS  CAS  Google Scholar 

  97. Yamashita, O. and Tomiyoshi, S.: High performance n-type bismuth telluride with highly stable thermoelectric figure of merit, J. Appl. Phys. 95, 6277 (2004)

    Article  ADS  CAS  Google Scholar 

  98. Yang, R., Chen, G. and Dresselhaus, M. S.:Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction, Phys. Rev. B 72, 125418 (2005)

    Article  ADS  CAS  Google Scholar 

  99. Zaitsev V.K., Fedorov M. I., Gurieva E. A., et al.: Highly effective Mg2Si1-xSnx thermo-electrics, Phys. Rev. B 74, 045207 (2006)

    Article  ADS  CAS  Google Scholar 

  100. Zhao X.Y., Shi X., Chen L. D., et al.: Synthesis of YbyCo4Sb12/Yb2O3 composites and their thermoelectric properties, Appl. Phys. Lett. 89, 092121 (2006)

    Article  ADS  CAS  Google Scholar 

  101. Zhao L.D., Zhang B.P., Li J.F., et al.: Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering, J. Alloys Compd. 455, 259 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Godart, C., P. Gonçalves, A., Lopes, E.B., Villeroy, B. (2009). Role of Structures on Thermal Conductivity in Thermoelectric Materials. In: Zlatić, V., Hewson, A.C. (eds) Properties and Applications of Thermoelectric Materials. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2892-1_2

Download citation

Publish with us

Policies and ethics