Skip to main content

Chalcogenide Glasses Selected as a Model System for Studying Thermal Properties

  • Chapter
  • First Online:
Glassy, Amorphous and Nano-Crystalline Materials

Abstract

Chalcogenide glasses have been intensively studied from the seventieth of twentieth century as the important new class of promising high-tech materials for semiconducting devices and infrared optics. Chalcogenide glasses are formed by chalcogens, stoichiometric chalcogenides, e.g. germanium and/or arsenic sulfides or selenides or by non-stoichiometrics alloys whose composition (and physicochemical properties) can be modified in broad ranges. They have unique optical properties – low phonon energies as compared with oxide glasses, high refractive index, infrared luminescence and so on. The advantage of many chalcogenide glasses is that they can be obtained using very simple technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schawe JEK (1995) Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition. Thermochim Acta 261:183–194

    Article  CAS  Google Scholar 

  2. Modulated DSC Compendium (1995) TA Instruments

    Google Scholar 

  3. Wunderlich B (1997) The heat capacity of polymers. Thermochim Acta 300:43–65

    Article  CAS  Google Scholar 

  4. Simon SL (2001) Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta 374:55–71

    Article  CAS  Google Scholar 

  5. Merzyakov M, Schick C (2001) Step response analysis in DSC – a fast way to generate heat capacity spektra. Thermochim Acta 380:5–12

    Article  Google Scholar 

  6. Avramov I, Gutzow I (1988) Heating rate and glass transition temperature. J Non-Cryst Solids 104:148–150

    Article  CAS  Google Scholar 

  7. Grenet J, Larmagnac JP, Michon P, Vautier C (1981) Relaxation structurelle dans les couches minces de sélénium amorphe au dessous de la température de transition vitreuse. Thin Solid Films 76:53–60

    Article  CAS  Google Scholar 

  8. Kovacs AJ, Hutchinson JM (1979) Isobaric thermal behavior of glasses during uniform cooling and heating: dependence of the characteristic temperatures on the relative contributions of temperature and structure to the rate of recovery. II. A one-parameter model approach. J Polym Sci 17:2031–2058

    CAS  Google Scholar 

  9. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Analysis of structural relaxation in glass using rate heating data. J Am Ceram Soc 59:12–16

    Article  CAS  Google Scholar 

  10. Grenet J, Saiter JM, Vautier C, Bayard J (1992) The Tg displacement measurements: a way to foresee the physical behaviour and the use of glassy polymers. J Therm Anal 38:557–565

    Article  CAS  Google Scholar 

  11. Derrey T, Saiter JM, Larmagnac JP, Vautier C (1985) Structural relaxation below Tg of amorphous germanium-selenium alloys. Mater Lett 3:308–310

    Article  CAS  Google Scholar 

  12. Kovacs AJ (1963) Glass transition in amorphous polymer: phenomenological study. Adv Polym Sci 3:394–505

    Article  Google Scholar 

  13. Lasocka M (1976) Thermal stability of Ge–As–Te–In glasses. Mat Sci Eng 23:173–177

    Article  CAS  Google Scholar 

  14. Černošek Z, Holubová J, Černošková E, Liška M (2002) Enthalpic relaxation and the glass Transition. J Optoelectron Adv Mater 4:489–503

    Google Scholar 

  15. Holubová J, Černošek Z, Černošková E (2005) The study of the glass transition by the StepScan DSC technique. J Optoelectron Adv Mater 7:2671–2676

    Google Scholar 

  16. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266

    Article  CAS  Google Scholar 

  17. Moynihan CT (1995) Structure, dynamics and properties of silicate melts. In: Stebbins JF, McMillan PF, Dingwell DB (eds) Reviews in mineralogy, vol 32. Mineralogical Society of America, Washington, DC, pp 1–19

    Google Scholar 

  18. Tool AQ (1948) Effect of heat-treatment on the density and constitution of high-silica glasses of the borosilicate type. J Am Ceram Soc 31:177–180

    Article  CAS  Google Scholar 

  19. Suga H (2000) Prospects of materials science: from crystalline to amorphous solids. J Therm Anal Calorim 60:957–974

    Article  CAS  Google Scholar 

  20. Elliott SR (1990) Physics of amorphous materials, 2nd edn. Longman Scientific and Technical, Essex

    Google Scholar 

  21. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J Non-Cryst Solids 131–133:13–31

    Article  Google Scholar 

  22. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–264

    Article  CAS  Google Scholar 

  23. Garn PD (1965) Thermoanalytical methods. Academic, New York, p 194

    Google Scholar 

  24. Naraynaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498

    Article  Google Scholar 

  25. Gutzow I, Schmelzer J (1995) The vitreous state. Springer, Berlin

    Google Scholar 

  26. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212

    Article  CAS  Google Scholar 

  27. Brunacci A, Cowie JMG, Fergusson R, McEwen IJ (1997) Enthalpy relaxation in glassy polystyrenes – part 1. Polymer 38:751

    Article  Google Scholar 

  28. Montserrat S, Gomez Ribelles J, Meseguer JM (1998) The application of a new configurational entropy model to the structural relaxation in an epoxy resin. Polymer 39:3801–3807

    Article  CAS  Google Scholar 

  29. Ducroux J-P, Rekhson SM, Merat FL (1994) Structural relaxation in thermorheologically complex materials. J Non-Cryst Solids 172–174:541–553

    Article  Google Scholar 

  30. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glassforming liquids and amorphous solids. J Appl Phys 88:3113–3157

    Article  CAS  Google Scholar 

  31. Atkinson JR, Hay JN, Jenkins MJ (2002) Enthalpic relaxation in semi-crystalline PEEK. Polymer 43:731–735

    Article  CAS  Google Scholar 

  32. Bailey NA, Hay JN, Price DM (2001) A study of enthalpic relaxation of poly(ethylene terephthalate) by conventional and modulated temperature DSC. Thermochim Acta 367–368:425–428

    Article  Google Scholar 

  33. Scherer GW (1991) Glass formation and relaxation. In: Zarzycki J (ed) Materials science and technology, vol 9. VCH, Cambridge, pp 119–174

    Google Scholar 

  34. Richardson MJ, Savill AG (1975) Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer 16:753–757

    Article  CAS  Google Scholar 

  35. Mazurin OV (1977) Relaxation phenomena in glass. J Non-Cryst Solids 25:129–169

    Article  CAS  Google Scholar 

  36. Mora MT (1997) Chalcogenide glasses. In: Thorpe MF, Mitkova MI (eds) Amorphous insulators and semiconductors. Kluwer Academic, London, pp 45–69

    Google Scholar 

  37. Hutchinson JM, Kumar P (2002) Enthalpy relaxation in polyvinyl acetate. Thermochim Acta 391:197–217

    Article  CAS  Google Scholar 

  38. Pappin AJ, Hutchinson JM, Ingram MD (1994) The appearance of annealing pre-peaks in inorganic glasses: new experimental results and theoretical interpretation. J Non-Cryst Solids 172–174:584–591

    Article  Google Scholar 

  39. Saiter JM, Ledru J, Hamou A, Zumailan A (1997) Dependence of the glass transition temperature on the heating rate and structure of chalcogenide glasses. Mater Lett 33:91–96

    Article  CAS  Google Scholar 

  40. Moynihan CT, Lee SK, Tatsumisago M, Minami T (1996) Estimation of activation energies for structural relaxation and viscous flow from DTA and DSC experiments. Thermochim Acta 280:153–162

    Article  Google Scholar 

  41. Angell CA (1988) Perspective on the glass transition. J Phys Chem Solids 49:863–871

    Article  CAS  Google Scholar 

  42. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:4201–4209

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported continuously by the project of the Ministry of Education of the Czech Republic MSM 0021627501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Černošek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Černošek, Z., Černošková, E., Holubová, J. (2011). Chalcogenide Glasses Selected as a Model System for Studying Thermal Properties. In: Šesták, J., Mareš, J., Hubík, P. (eds) Glassy, Amorphous and Nano-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2882-2_9

Download citation

Publish with us

Policies and ethics