Skip to main content

Columnar Liquid Crystalline Semiconductors

  • Chapter
  • First Online:
Liquid Crystalline Semiconductors

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 169))

Abstract

The advantages and disadvantages of the various methods used to study semiconducting discotic liquid crystals are surveyed. Comprehensive tables are provided of the charge-carrier mobilities of discotic liquid crystals. Interpretations of these mobilities are discussed as well as some of the remaining, outstanding problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, X., et al.: Orientational ordering and dynamics in the columnar phase of a discotic liquid crystal studied by deuteron NMR spectroscopy. J. Chem. Phys. 108(10), 4324–4332 (1998). doi:10.1063/1.475833

    Article  ADS  Google Scholar 

  2. Dvinskikh, S.V., et al.: Molecular self-diffusion in a columnar liquid crystalline phase determined by deuterium NMR. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(5 Pt 1), 050702/1–050702/4 (2002). doi:10.1103/PhysRevE.65.050702

    Google Scholar 

  3. Van Keulen, J., et al.: Electrical conductivity in hexaalkoxytriphenylenes. Recueil des Travaux Chimiques des Pays-Bas. 106(10), 534–536 (1987). doi:10.1002/recl.19871061004

    Article  Google Scholar 

  4. Boden, N., et al.: One-dimensional electronic conductivity in discotic liquid crystals. Chem. Phys. Lett. 152(1), 94–99 (1988). doi:10.1016/0009-2614(88)87334-2

    Article  ADS  Google Scholar 

  5. Arikainen, E.O., et al.: Effects of side-chain length on the charge transport properties of discotic liquid crystals and their implications for the transport mechanism. J. Mater. Chem. 5(12), 2161–2165 (1995). doi:10.1039/JM9950502161

    Article  Google Scholar 

  6. Bushby, R.J.: Unpublished

    Google Scholar 

  7. Arikainen, E.O.: Spectroscopic Studies of the nature of charge carriers in one-dimensional electronically conducting discotic liquid crystals, p. 192. School of Chemistry, University of Leeds (1996)

    Google Scholar 

  8. Boden, N., et al.: First observation of a n-doped quasi-One-dimensional electronically-conducting discotic liquid crystal. J. Am. Chem. Soc. 116(23), 10807–10808 (1994). doi:10.1021/ja00102a065

    Article  Google Scholar 

  9. Boden, N., Bushby, R.J., Clements, J.: Mechanism of quasi-one-dimensional electronic conductivity in discotic liquid crystals. J. Chem. Phys. 98(7), 5920–5231 (1993). doi:10.1063/1.464886

    Article  ADS  Google Scholar 

  10. Boden, N., et al.: Characterization of the cationic species formed in p-doped discotic liquid crystals. J. Mater. Chem. 5(10), 1741–1748 (1995). doi:10.1039/JM9950501741

    Article  Google Scholar 

  11. Borner, R.C.: Electronically conducting discotic liquid crystals, p. 168. School of Chemistry, University of Leeds (1992)

    Google Scholar 

  12. Schouten, P.G., et al.: Radiation-induced conductivity in polymerized and nonpolymerized columnar aggregates of phthalocyanine. J. Am. Chem. Soc. 114(23), 9028–9034 (1992). doi:10.1021/ja00049a039

    Article  Google Scholar 

  13. Warman, J.M., Van De Craats, A.M.: Charge mobility in discotic materials studied by PR-TRMC. Mol. Cryst. Liq. Cryst. 396, 41–72 (2003). doi:10.1080/15421400390213186

    Article  Google Scholar 

  14. Van de Craats, A.M., et al.: Mechanism of charge transport along columnar stacks of a triphenylene dimer. J. Phys. Chem. B 102(48), 9625–9634 (1998). doi:10.1021/jp9828989

    Article  Google Scholar 

  15. Piris, J., et al.: Aligned thin films of discotic hexabenzocoronenes: anisotropy in the optical and charge transport properties. Adv. Funct. Mater. 14(11), 1053–1061 (2004). doi:10.1002/adfm.200400182

    Article  Google Scholar 

  16. Piris, J., Pisula, W., Warman, J.M.: Anisotropy of the optical absorption and photoconductivity of a zone-cast film of a discotic hexabenzocoronene. Synth. Met. 147(1–3), 85–89 (2004). doi:10.1016/j.synthmet.2004.06.032

    Article  Google Scholar 

  17. Saeki, A., et al.: Charge-carrier dynamics in polythiophene films studied by in-situ measurement of flash-photolysis time-resolved microwave conductivity (FP-TRMC) and transient optical spectroscopy (TOS). Philos. Mag. 86(9), 1261–1276 (2006). doi:10.1080/14786430500380159

    Article  ADS  Google Scholar 

  18. Sakurai, T., et al.: Prominent electron transport property observed for triply fused metalloporphyrin dimer: directed columnar liquid crystalline assembly by amphiphilic molecular design. J. Am. Chem. Soc. 130(42), 13812–13813 (2008). doi:10.1021/ja8030714

    Article  Google Scholar 

  19. Adam, D., et al.: Transient photoconductivity in a discotic liquid crystal. Phys. Rev. Lett. 70(4), 457–460 (1993). doi:10.1103/PhysRevLett.70.457

    Article  ADS  Google Scholar 

  20. Adam, D., et al.: Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal. Nature 371(6493), 141–143 (1994). doi:10.1038/371141a0

    Article  ADS  Google Scholar 

  21. Kepler, R.G.: Charge carrier production and mobility in anthracene crystals. Phys. Rev. 119, 1226–1229 (1960). doi:10.1103/PhysRev.119.1226

    Article  ADS  Google Scholar 

  22. Muller-Horsche, E., Haarer, D., Scher, H.: Transition from dispersive to nondispersive transport: photoconduction of polyvinylcarbarzole. Condens. Matter Mater. Phys. 35(3), 1273–1280 (1987). doi:10.1103/PhysRevB.35.1273

    Article  Google Scholar 

  23. Christ, T., Stuempflen, V., Wendorff, J.H.: Light-emitting diodes based on a discotic main chain polymer. Macromol. Rapid Commun. 18(2), 93–98 (1997). doi:10.1002/marc.1997.030180204

    Article  Google Scholar 

  24. Mott, N.F., Gurney, D.: Electronic Processes in Ionic Crystals. Academic Press, New York (1970)

    Google Scholar 

  25. Bushby, R.J., et al.: Enhanced charge conduction in discotic liquid crystals. J. Mater. Chem. 11, 1982–1984 (2001). doi:10.1039/b104112f

    Article  Google Scholar 

  26. McNeill, A., et al.: Discotic liquid crystals. In: 3D Nanoelectronic Computer Architecture and Implementation. Taylor & Francis, Philadelphia (2004)

    Google Scholar 

  27. Garcia-Frutos, E.M., et al.: High charge mobility in discotic liquid-crystalline triindoles: just a core business? Angew. Chem. 50, 7399–7402 (2011). doi:10.1002/anie.201005820

    Google Scholar 

  28. Bjornholm, T., Hassenkam, T., Reitzel, N.: Supramolecular organization of highly conducting organic thin films by the Langmuir-Blodgett technique. J. Mater. Chem. 9(9), 1975–1990 (1999). doi:10.1039/A903019K

    Article  Google Scholar 

  29. Pisula, W., et al.: A zone-casting technique for device fabrication of field-effect transistors based on discotic hexa-peri-hexabenzocoronene. Adv. Mater. 17(6), 684–689 (2005). doi:10.1002/adma.200401171

    Article  Google Scholar 

  30. Pisula, W., et al.: Exceptionally long-range self-assembly of hexa-peri-hexabenzocoronene with dove-tailed alkyl substituents. J. Am. Chem. Soc. 126(26), 8074–8075 (2004). doi:10.1021/ja048351r

    Article  Google Scholar 

  31. Gearba, R.I., et al.: Homeotropic alignment of columnar liquid crystals in open films by means of surface nanopatterning. Adv. Mater. 19(6), 815–820 (2007). doi:10.1002/adma.200602460

    Article  Google Scholar 

  32. Shklyarevskiy, I.O., et al.: High anisotropy of the field-effect transistor mobility in magnetically aligned discotic liquid-crystalline semiconductors. J. Am. Chem. Soc. 127(46), 16233–16237 (2005). doi:10.1021/ja054694t

    Article  Google Scholar 

  33. Bramble, J.P., et al.: Planar alignment of columnar discotic liquid crystals by isotropic phase dewetting on chemically patterned surfaces. Adv. Funct. Mater. 20(6), 914–920 (2010). doi:10.1002/adfm.200902140

    Article  Google Scholar 

  34. de Leeuw, D.M., et al.: Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87(1), 53–59 (1997). doi:10.1016/S0379-6779(97)80097-5

    Article  Google Scholar 

  35. Iino, H., et al.: Fast ambipolar carrier transport and easy homeotropic alignment in a metal-free phthalocyanine derivative. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44(42–45), L1310–L1312 (2005). doi:10.1143/JJAP.44.L1310

    Article  Google Scholar 

  36. Iino, H., et al.: High electron mobility of 0.1 cm2 V−1 s−1 in the highly ordered columnar phase of hexahexylthiotriphenylene. Appl. Phys. Lett. 87(19), 192105/1–192105/3 (2005). doi:10.1063/1.2128066

    Article  ADS  Google Scholar 

  37. Iino, H., et al.: Fast electron transport in discotic columnar phases of triphenylene derivatives. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Br. Commun. Rev. Pap. 45(1B), 430–433 (2006). doi:10.1143/JJAP.45.430

    Google Scholar 

  38. Boden, N., et al.: Enhanced conduction in the discotic mesophase. Mol. Cryst. Liq. Cryst. 410, 541–549 (2004). doi:10.1080/15421400490434324

    Article  Google Scholar 

  39. Simmerer, J., et al.: Transient photoconductivity in a discotic hexagonal plastic crystal. Adv. Mater. 8(10), 815–819 (1996). doi:10.1002/adma.19960081010

    Article  Google Scholar 

  40. Hirai, Y., et al.: Enhanced hole-transporting behavior of discotic liquid-crystalline physical gels. Adv. Funct. Mater. 18(11), 1668–1675 (2008). doi:10.1002/adfm.200701313

    Article  Google Scholar 

  41. Wegewijs, B.R., et al.: Charge-carrier mobilities in binary mixtures of discotic triphenylene derivatives as a function of temperature. Phys. Rev. B Condens. Matter Mater. Phys. 65(24), 245112/1–245112/8 (2002). doi:10.1103/PhysRevB.65.245112

    Article  ADS  Google Scholar 

  42. Nakayama, H., et al.: Measurements of carrier mobility and quantum yield of carrier generation in discotic liquid crystal hexahexyl-oxytriphenylene by time-of-flight method. Jpn. J. Appl. Phys. Part 2 Lett. 38(9A/B), L1038–L1041 (1999). doi:10.1143/JJAP.38.L1038

    Article  Google Scholar 

  43. Mizoshita, N., et al.: The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem. Commun. 5, 428–429 (2002). doi:10.1039/B111380C

    Article  Google Scholar 

  44. Miyake, Y., et al.: Carrier mobility of a columnar mesophase formed by a perfluoroalkylated triphenylene. Synth. Met. 159(9–10), 875–879 (2009). doi:10.1016/j.synthmet.2009.01.044

    Article  Google Scholar 

  45. Van de Craats, A.M., et al.: The mobility of charge carriers in all four phases of the columnar discotic material hexakis(hexylthio)triphenylene. Combined TOF and PR-TRMC results. Adv. Mater. 8(10), 823–826 (1996). doi:10.1002/adma.19960081012

    Article  Google Scholar 

  46. Iino, H., et al.: Hopping conduction in the columnar liquid crystal phase of a dipolar discogen. J. Appl. Phys. 100(4), 043716/1–043716/4 (2006). doi:10.1063/1.2219692

    Article  ADS  Google Scholar 

  47. Bushby, R.J., et al.: Molecular engineering of triphenylene-based discotic liquid crystal conductors. Optoelectron. Rev. 13(4), 269–279 (2005)

    Google Scholar 

  48. Tate, D.J.: Applications of discotic liquid crystals in organic electronics, p. 237. School of Chemistry, University of Leeds (2008)

    Google Scholar 

  49. Ochse, A., et al.: Transient photoconduction in discotic liquid crystals. Phys. Chem. Chem. Phys. 1(8), 1757–1760 (1999). doi:10.1039/A808615J

    Article  Google Scholar 

  50. Bleyl, I., et al.: Photopolymerization and transport properties of liquid crystalline triphenylenes. Mol. Cryst. Liq. Cryst. Sci. Technol. Section A Mol. Cryst. Liq. Cryst. 299, 149–155 (1997). doi:10.1080/10587259708041987

    Article  Google Scholar 

  51. Bleyl, I., et al.: One-dimensional hopping transport in a columnar discotic liquid-crystalline glass. Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 79(3), 463–475 (1999). doi:10.1080/014186399257258

    ADS  Google Scholar 

  52. Paraschiv, I., et al.: H-bond-stabilized triphenylene-based columnar discotic liquid crystals. Chem. Mater. 18(4), 968–974 (2006). doi:10.1021/cm052221f

    Article  Google Scholar 

  53. Paraschiv, I., et al.: Hydrogen-bond stabilized columnar discotic benzenetrisamides with pendant triphenylene groups. J. Mater. Chem. 18(45), 5475–5481 (2008). doi:10.1039/B805283B

    Article  Google Scholar 

  54. Gearba, R.I., et al.: Tailoring discotic mesophases: columnar order enforced with hydrogen bonds. Adv. Mater. 15(19), 1614–1618 (2003). doi:10.1002/adma.200305137

    Article  Google Scholar 

  55. Kreouzis, T., et al.: Enhanced electronic transport properties in complementary binary discotic liquid crystal systems. Chem. Phys. 262(2–3), 489–497 (2000). doi:10.1016/S0301-0104(00)00323-2

    Article  ADS  Google Scholar 

  56. Donovan, K.J., et al.: Molecular engineering the phototransport properties of discotic liquid crystals. Mol. Cryst. Liq. Cryst. 396, 91–112 (2003). doi:10.1080/15421400390213221

    Article  Google Scholar 

  57. Tate, D.J., et al.: Improved syntheses of high hole mobility phthalocyanines: a case of steric assistance in the cyclo-oligomerisation of phthalonitriles. Beilstein J. Org. Chem. 8(14), 120–128 (2012). doi:10.3762/bjoc.8.14

    Article  Google Scholar 

  58. Schouten, P.G., et al.: The effect of structural modifications on charge migration in mesomorphic phthalocyanines. J. Am. Chem. Soc. 116(15), 6880–6894 (1994). doi:10.1021/ja00094a048

    Article  Google Scholar 

  59. van de Craats, A.M., Warman, J.M.: The influence of chain-to-core coupling on the charge transport and mesomorphic properties of discotic materials. Synth. Met. 121(1–3), 1287–1288 (2001). doi:10.1016/S0379-6779(00)01219-4

    Article  Google Scholar 

  60. van de Craats, A.M.: Charge transport in self-aggregating columnar systems such as phthalocyanines, triphenylenes and benzocoronenes. The formation, migration and recombination of charge carriers in various phases of the materials studied is investigated by making use of the time-resolved microwave conductivity technique, PR-TRMC. Opto-electronic Materials, Delft University of Technology (2000)

    Google Scholar 

  61. Ban, K., et al.: Discotic liquid crystals of transition metal complexes. 29. Mesomorphism and charge transport properties of alkylthio-substituted phthalocyanine rare-earth metal sandwich complexes. J. Mater. Chem. 11(2), 321–331 (2001). doi:10.1039/B003984P

    Article  Google Scholar 

  62. Fujikake, H., et al.: Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor. Appl. Phys. Lett. 85(16), 3474–3476 (2004). doi:10.1063/1.1805178

    Article  ADS  Google Scholar 

  63. Mori, T., Takeuchi, H., Fujikawa, H.: Field-effect transistors based on a polycyclic aromatic hydrocarbon core as a two-dimensional conductor. J. Appl. Phys. 97(6), 066102/1–066102/3 (2005). doi:10.1063/1.1862757

    Article  ADS  Google Scholar 

  64. Fechtenkotter, A., et al.: Discotic liquid crystalline hexabenzocoronenes carrying chiral and racemic branched alkyl chains: supramolecular engineering and improved synthetic methods. Tetrahedron 57(17), 3769–3783 (2001). doi:10.1016/S0040-4020(01)00252-6

    Article  Google Scholar 

  65. Ito, S., et al.: Synthesis and self-assembly of functionalized hexa-peri-hexabenzocoronenes. Chem. A Eur. J. 6(23), 4327–4342 (2000). doi:10.1002/1521-3765(20001201)6:23<4327::AID-CHEM4327>3.0.CO;2-7

    Article  Google Scholar 

  66. Van De Craats, A.M., et al.: Record charge carrier mobility in a room temperature discotic liquid-crystalline derivative of hexabenzocoronene. Adv. Mater. 11(17), 1469–1472 (1999). doi:10.1002/(SICI)1521-4095(199912)11:17<1469::AID-ADMA1469>3.0.CO;2-K

    Article  Google Scholar 

  67. Pisula, W., et al.: Relation between supramolecular order and charge carrier mobility of branched alkyl hexa-peri-hexabenzocoronenes. Chem. Mater. 18(16), 3634–3640 (2006). doi:10.1021/cm0602343

    Article  Google Scholar 

  68. van de Craats, A.M., et al.: Meso-epitaxial solution growth of self-organizing discotic liquid crystalline semiconductors. Adv. Funct. Mater. 15(6), 495–499 (2003). doi:10.1002/adma.200390114

    Google Scholar 

  69. Kastler, M., et al.: Room-temperature nondispersive hole transport in a discotic liquid crystal. Appl. Phys. Lett. 89(25), 252103/1–252103/3 (2006). doi:10.1063/1.2408654

    Article  ADS  Google Scholar 

  70. Watson, M.D., et al.: Peralkylated coronenes via regiospecific hydrogenation of hexa-peri-hexabenzocoronenes. J. Am. Chem. Soc. 126(3), 766–771 (2004). doi:10.1021/ja037522+

    Article  Google Scholar 

  71. Iyer, V.S., et al.: A soluble C60 graphite segment. Angew. Chem. Int. Ed. 37(19), 2696–2699 (1998). doi:10.1002/(SICI)1521-3773(19981016)37:19<2696::AID-ANIE2696>3.0.CO;2-E

    Article  Google Scholar 

  72. Debije, M.G., et al.: The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126(14), 4641–4645 (2004). doi:10.1021/ja0395994

    Article  Google Scholar 

  73. Tomovic, Z., Watson, M.D., Muellen, K.: Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. 43(6), 755–758 (2004). doi:10.1002/anie.200352855

    Article  Google Scholar 

  74. Zhang, Y.-D., et al.: Columnar discotic liquid-crystalline oxadiazoles as electron-transport materials. Langmuir 19(16), 6534–6536 (2003). doi:10.1021/la0341456

    Article  Google Scholar 

  75. Boden, N., et al.: 2,3,7,8,12,13-Hexakis[2-(2-methoxyethoxy)ethoxy]tricycloquinazoline: a discogen which allows enhanced levels of n-doping. Liq. Cryst. 28(12), 1739–1748 (2001). doi:10.1080/02678290110082383

    Article  Google Scholar 

  76. Sienkowska, M.J., et al.: Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17(14), 1392–1398 (2007). doi:10.1039/B612253A

    Article  Google Scholar 

  77. Van de Craats, A.M., et al.: Charge transport in mesomorphic derivatives of perylene. Synth. Met. 102(1–3), 1550–1551 (1999). doi:10.1016/S0379-6779(98)00554-2

    Article  Google Scholar 

  78. Struijk, C.W., et al.: Liquid crystalline perylene diimides: architecture and charge carrier mobilities. J. Am. Chem. Soc. 122(45), 11057–11066 (2000). doi:10.1021/ja000991g

    Article  Google Scholar 

  79. Tsao, H.N., et al.: From ambi- to unipolar behavior in discotic dye field-effect transistors. Adv. Mater. 20(14), 2715–2719 (2008). doi:10.1002/adma.200702992

    Article  Google Scholar 

  80. Monobe, H., Mima, S., Shimizu, Y.: Carrier mobility of discotic lamellar mesophases of 5,10,15,20-tetrakis(4-n-pentadecylphenyl)porphyrin. Chem. Lett. 9, 1004–1005 (2000)

    Article  Google Scholar 

  81. Yuan, Y., Gregg, B.A., Lawrence, M.F.: Time-of-flight study of electrical charge mobilities in liquid-crystalline zinc octakis(beta -octoxyethyl) porphyrin films. J. Mater. Res. 15(11), 2494–2498 (2000). doi:10.1557/JMR.2000.0358

    Article  ADS  Google Scholar 

  82. Schouten, P.G., et al.: Charge migration in supramolecular stacks of peripherally substituted porphyrins. Nature 353(6346), 736–737 (1991). doi:10.1038/353736a0

    Article  ADS  Google Scholar 

  83. Destrade, C., et al.: Disk-like mesogen polymorphism. Mol. Cryst. Liq. Cryst. 106(1–2), 121–146 (1984). doi:10.1080/00268948408080183

    Article  Google Scholar 

  84. Chiang, L.Y., et al.: Highly oriented fibers of discotic liquid crystal. J. Chem. Soc. Chem. Commun. 11, 695–696 (1985). doi:10.1039/C39850000695

    Article  ADS  Google Scholar 

  85. Safinya, C.R., et al.: Synchrotron x-ray scattering study of freely suspended discotic strands. Mol. Cryst. Liq. Cryst. 123(1–4), 205–216 (1985). doi:10.1080/00268948508074778

    Article  Google Scholar 

  86. Arikainen, E.O., et al.: Complimentary polytopic interactions. Angew. Chem. Int. Ed. 39(13), 2333–2336 (2000). doi:10.1002/1521-3757(20000703)112:13<2423::AID-ANGE2423>3.0.CO;2-R

    Article  Google Scholar 

  87. Bushby, R.J., et al.: The stability of columns comprising alternating triphenylene and hexaphenyltriphenylene molecules: variations in the structure of the hexaphenyltriphenylene component. Liq. Cryst. 33(6), 653–664 (2006). doi:10.1080/02678290600682078

    Article  Google Scholar 

  88. Borsenberger, P.M., O’Regan, M.B.: The role of dipole moments on hole transport in triphenylamine doped poly(styrene). Chem. Phys. 200(1,2), 257–263 (1995). doi:10.1016/0301-0104(95)00195-T

    Article  Google Scholar 

  89. Lemaur, V., et al.: Charge transport properties in discotic liquid crystals: a quantum-chemical insight into structure-property relationships. J. Am. Chem. Soc. 126, 3271–3279 (2004). doi:10.1021/ja0390956. Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved

    Google Scholar 

  90. van de Craats, A.M., Warman, J.M.: The core-size effect on the mobility of charge in discotic liquid crystalline materials. Adv. Mater. 13(2), 130–133 (2001). doi:10.1002/1521-4095(200101)13:2<130::AID-ADMA130>3.0.CO;2-L

    Article  Google Scholar 

  91. Meot-Ner, M.: Dimer cations of polycyclic aromatics. Experimental bonding energies and resonance stabilization. J. Phys. Chem. 84(21), 2724–2728 (1980)

    Article  Google Scholar 

  92. Mautner, M.: Structurally complex organic ions: thermochemistry and noncovalent interactions. Acc. Chem. Res. 17(5), 186–193 (1984). doi:10.1021/ar00101a006

    Article  Google Scholar 

  93. Terahara, A., et al.: Transannular interactions in dimer cation radicals of naphthalene derivatives. Conformation anomaly and stabilization energy. J. Phys. Chem. 90(8), 1564–1571 (1986). doi:10.1021/j100399a022

    Article  Google Scholar 

  94. Ohya-Nishiguchi, H., Ide, H., Hirota, N.: Spin densities in the trimer cation radical of coronene. Chem. Phys. Lett. 66(3), 581–583 (1979). doi:10.1016/0009-2614(79)80344-9

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Bushby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bushby, R.J., Tate, D.J. (2013). Columnar Liquid Crystalline Semiconductors. In: Bushby, R., Kelly, S., O'Neill, M. (eds) Liquid Crystalline Semiconductors. Springer Series in Materials Science, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2873-0_3

Download citation

Publish with us

Policies and ethics