Skip to main content

Local Approximations for an Efficient and Accurate Treatment of Electron Correlation and Electron Excitations in Molecules

  • Chapter
  • First Online:
Linear-Scaling Techniques in Computational Chemistry and Physics

Abstract

Local methods for the description of electron correlation in ground and electronically excited states of molecules, as implemented in the MOLPRO system of ab initio programs, are reviewed. Recent improvements in the performance of the local method resulting from an implementation of the density-fitting technique for all electron-repulsion integrals are discussed. Local fitting approximations lead to linear scaling of CPU time and disk space with molecular size, and allow for a significant increase of the size of molecules and basis sets that can be treated by the local MP2, CCSD, and CCSD(T) ab initio methods. Recent extensions of these methods to open-shell systems, as well as the inclusion of explicitly correlated terms are described. It is demonstrated that the latter lead to a drastic improvement of the accuracy of local methods. A local treatment of electron excitations within the EOM-CCSD and CC2 theories, as well as a local description of first- and second-order molecular properties are also discussed. Finally, we present some illustrative applications of the outlined methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The molecular size can be measured by e.g. the number of atoms or the number of correlated electrons.

  2. 2.

    The iterative solution of LMP2 equations can be avoided if the Laplace transform is applied to the energy denominator, see Ref. [75] and Section 14.5.2.3.

  3. 3.

    In MOLPRO, the threshold \(T_\textrm{BP}=1-\delta\) is used, i.e. 0.980, 0.985, and 0.990 for double, triple, and quadruple zeta basis sets.

  4. 4.

    Optionally, in LMP2 one can introduce as a further class called “distant pairs”, for which the two-electron integrals are approximated by multipole approximations [25, 27]. However for LCCSD calculations this saves little time and is not recommended. This approximation will therefore not be further discussed in the current article.

  5. 5.

    Another possibility of removing linear dependencies consists in eliminating individual basis functions from the domains. In this case the functions which have the largest coefficients in the eigenvectors of \(\textbf{S}^{(ij)}\) corresponding to small eigenvalues are removed. However, this is less satisfactory since it is sometimes difficult to select the deleted functions so that the symmetry of the molecule is not disturbed and that the wave function remains invariant to rotations of the molecule.

  6. 6.

    A strictly spin-adapted theory can be obtained by projecting out the spin-contamination as described for partially spin-restricted coupled cluster theory in Ref. [94]; the differences of the results to standard RMP2 are usually negligibly small.

  7. 7.

    Only electronic states dominated by single excitations can be obtained reliably with EOM-CCSD for molecules containing more than 2 electrons. Electronic states dominated by double excitations are also formally available, but their accuracy is questionable.

  8. 8.

    The Davidson refreshment procedure consists of a selection of the best approximation for a desired vector and the removal of all other vectors from the small Davidson space. It is usually performed when the dimension of this space reaches some maximum allowed value.

References

  1. Møller C, Plesset MS (1934) Phys Rev 46:618

    Google Scholar 

  2. Čížek J (1966) J Chem Phys 45:4256

    Google Scholar 

  3. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910

    Google Scholar 

  4. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479

    CAS  Google Scholar 

  5. Kállay M, Surján PR (2000) J Chem Phys 113:1359

    Google Scholar 

  6. Kállay M, Surján PR (2001) J Chem Phys 115:2945

    Google Scholar 

  7. Kállay M, Szalay PG, Surján PR (2002) J Chem Phys 117:980

    Google Scholar 

  8. Hirata S (2003) J Phys Chem A 107:9887

    CAS  Google Scholar 

  9. Olsen J (2000) J Chem Phys 113:7140

    CAS  Google Scholar 

  10. Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315

    CAS  Google Scholar 

  11. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104

    Google Scholar 

  12. Adler TB, Werner HJ, Manby FR (2009) J Chem Phys 130:054106

    Google Scholar 

  13. Adler TB, Werner HJ (2009) J Chem Phys 130:241101

    Google Scholar 

  14. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427

    CAS  Google Scholar 

  15. Werner HJ, Adler TB, Knizia G, Manby FR (2010) In: Cársky P, Paldus J, Pittner J (eds) Recent progress in coupled cluster methods. Springer, Heidelberg, p 573

    Google Scholar 

  16. Tew DP, Hättig C, Bachorz RA, Klopper W (2010) In: Cársky P, Paldus J, Pittner J (eds) Recent progress in coupled cluster methods. Springer, Heidelberg, p 535

    Google Scholar 

  17. Monkhorst HJ (1977) Int J Quantum Chem Symp 11:421

    Google Scholar 

  18. Sekino H, Bartlett RJ (1984) Int J Quantum Chem Symp 18:255

    CAS  Google Scholar 

  19. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029

    CAS  Google Scholar 

  20. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409

    CAS  Google Scholar 

  21. Pulay P (1983) Chem Phys Lett 100:151

    CAS  Google Scholar 

  22. Saebø S, Pulay P (1985) Chem Phys Lett 113:13

    Google Scholar 

  23. Pulay P, Saebø S (1986) Theor Chim Acta 69:357

    CAS  Google Scholar 

  24. Hampel C, Werner HJ (1996) J Chem Phys 104:6286

    CAS  Google Scholar 

  25. Hetzer G, Pulay P, Werner HJ (1998) Chem Phys Lett 290:143

    CAS  Google Scholar 

  26. Schütz M, Hetzer G, Werner HJ (1999) J Chem Phys 111:5691

    Google Scholar 

  27. Hetzer G, Schütz M, Stoll H, Werner HJ (2000) J Chem Phys 113:9443

    CAS  Google Scholar 

  28. Schütz M, Werner HJ (2000) Chem Phys Lett 318:370

    Google Scholar 

  29. Schütz M (2000) J Chem Phys 113:9986

    Google Scholar 

  30. Schütz M, Werner HJ (2001) J Chem Phys 114:661

    Google Scholar 

  31. Schütz M (2002) J Chem Phys 113:8772

    Google Scholar 

  32. Schütz M (2002) Phys Chem Chem Phys 4:3941

    Google Scholar 

  33. Werner HJ, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Heßelmann A, Hetzer G, Hrenar T, Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2010) Molpro, version 2010.1, a package of ab initio programs. http://www.molpro.net

  34. El Azhary A, Rauhut G, Pulay P, Werner HJ (1998) J Chem Phys 108:5185

    CAS  Google Scholar 

  35. Rauhut G, Werner HJ (2001) Phys Chem Chem Phys 3:4853

    CAS  Google Scholar 

  36. Schütz M, Werner HJ, Lindh R, Manby FR (2004) J Chem Phys 121:737

    Google Scholar 

  37. Korona T, Pflüger K, Werner HJ (2004) Phys Chem Chem Phys 6:2059

    CAS  Google Scholar 

  38. Pflüger K (2008) Thesis, University of Stuttgart

    Google Scholar 

  39. Russ NJ, Crawford TD (2004) Chem Phys Lett 400:104

    CAS  Google Scholar 

  40. Korona T, Werner HJ (2003) J Chem Phys 118:3006

    CAS  Google Scholar 

  41. Kats D, Korona T, Schütz M (2006) J Chem Phys 125:104106

    Google Scholar 

  42. Kats D, Korona T, Schütz M (2007) J Chem Phys 127:064107

    Google Scholar 

  43. Kats D, Schütz M (2009) J Chem Phys 131:124117

    Google Scholar 

  44. Kats D, Schütz M (2010) Z Phys Chem 224:601

    CAS  Google Scholar 

  45. Pisani C, Busso M, Capecchi G, Casassa S, Dovesi R, Maschio L, Zicovich-Wilson C, Schütz M (2005) J Chem Phys 122:094113

    CAS  Google Scholar 

  46. Maschio L, Usvyat D, Pisani C, Manby FR, Casassa S, Schütz M (2007) Phys Rev B 76:075101

    Google Scholar 

  47. Maschio L, Usvyat D (2008) Phys Rev B 78:073102

    Google Scholar 

  48. Usvyat D, Maschio L, Pisani C, Schütz M (2010) Z Phys Chem 224:441

    Google Scholar 

  49. Schütz M, Usvyat D, Lorenz M, Pisani C, Maschio L, Casassa S, Halo M (2010) In: Manby FR (ed) Accurate condensed-phase quantum chemistry. Taylor and Francis Group, Abingdon, p 29

    Google Scholar 

  50. Maslen PE, Head-Gordon M (1998) Chem Phys Lett 283:102

    CAS  Google Scholar 

  51. Scuseria GE, Ayala PY (1999) J Chem Phys 111:8330

    CAS  Google Scholar 

  52. Auer AA, Nooijen M (2006) J Chem Phys 125:024104

    Google Scholar 

  53. Maslen PE, Head-Gordon M (1998) J Chem Phys 109:7093

    CAS  Google Scholar 

  54. Lee MS, Maslen PE, Head-Gordon M (2000) J Chem Phys 112:3592

    CAS  Google Scholar 

  55. Maslen PE, Dutoi AD, Lee MS, Shao YH, Head-Gordon M (2005) Mol Phys 103:425

    CAS  Google Scholar 

  56. Subotnik JE, Head-Gordon M (2005) J Chem Phys 123:064108

    Google Scholar 

  57. Subotnik JE, Sodt A, Head-Gordon M (2006) J Chem Phys 125:074116

    Google Scholar 

  58. Sodt A, Subotnik JE, Head-Gordon M (2006) J Chem Phys 125:194109

    Google Scholar 

  59. Subotnik JE, Sodt A, Head-Gordon M (2008) J Chem Phys 128:034103

    Google Scholar 

  60. Subotnik JE, Head-Gordon M (2008) J Phys Condens Matter 20:294211

    Google Scholar 

  61. Chwee TS, Szilva AB, Lindh R, Carter EA (2008) J Chem Phys 128:224106

    Google Scholar 

  62. Neese F, Hansen A, Liakos DG (2009) J Chem Phys 131:064103

    Google Scholar 

  63. Neese F, Wennmohs F, Hansen A (2009) J Chem Phys 130:114108

    Google Scholar 

  64. Förner W, Ladik J, Otto P, Čížek J (1985) Chem Phys 97:251

    Google Scholar 

  65. Li S, Ma J, Jiang Y (2002) J Comput Chem 23:237

    CAS  Google Scholar 

  66. Li W, Piecuch P, Gour JR, Li S (2009) J Chem Phys 131:114109

    Google Scholar 

  67. Flocke N, Bartlett RJ (2004) J Chem Phys 121:10935

    CAS  Google Scholar 

  68. Hughes TF, Flocke N, Bartlett RJ (2008) J Phys Chem A 112:5994

    CAS  Google Scholar 

  69. Friedrich J, Hanrath M, Dolg M (2007) J Chem Phys 126:154110

    Google Scholar 

  70. Friedrich J, Hanrath M, Dolg M (2008) Chem Phys 346:266

    CAS  Google Scholar 

  71. Friedrich J, Dolg M (2008) J Chem Phys 129:244105

    Google Scholar 

  72. Friedrich J, Dolg M (2009) J Chem Theory Comput 5:287

    CAS  Google Scholar 

  73. Friedrich J, Coriani S, Helgaker T, Dolg M (2009) J Chem Phys 131:154102

    Google Scholar 

  74. Stoll H (1992) J Chem Phys 97:8449

    CAS  Google Scholar 

  75. Kats D, Usvyat D, Schütz M (2008) Phys Chem Chem Phys 10:3430

    CAS  Google Scholar 

  76. Pipek J, Mezey PG (1989) J Chem Phys 90:4916

    CAS  Google Scholar 

  77. Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules, and the solid state. Academic Press, New York, NY, p 253

    Google Scholar 

  78. Reed AE, Weinhold F (1985) J Chem Phys 83:1736

    CAS  Google Scholar 

  79. Mata R, Werner HJ (2007) Mol Phys 105:2753

    CAS  Google Scholar 

  80. Boughton JW, Pulay P (1993) J Comput Chem 14:736

    CAS  Google Scholar 

  81. Dunning TH Jr (1989) J Chem Phys 90:1007

    CAS  Google Scholar 

  82. Werner HJ, Pflüger K (2006) Annu Rep Comput Chem 2:53

    CAS  Google Scholar 

  83. Löwdin PO (1950) J Chem Phys 18:365

    Google Scholar 

  84. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735

    CAS  Google Scholar 

  85. Mata R, Werner HJ (2006) J Chem Phys 125:184110

    Google Scholar 

  86. Russ NJ, Crawford TD (2004) J Chem Phys 121:691

    CAS  Google Scholar 

  87. Mata R, Werner HJ, Schütz M (2008) J Chem Phys 128:144106

    Google Scholar 

  88. Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959

    CAS  Google Scholar 

  89. Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct THEOCHEM 461:1

    Google Scholar 

  90. Pulay P (1980) Chem Phys Lett 73:393

    CAS  Google Scholar 

  91. Meyer W (1976) J Chem Phys 64:2901

    CAS  Google Scholar 

  92. Hampel C, Peterson KA, Werner HJ (1992) Chem Phys Lett 190:1

    CAS  Google Scholar 

  93. Liu Y, Werner HJ (2010) to be published

    Google Scholar 

  94. Knowles PJ, Hampel C, Werner HJ (1993) J Chem Phys 99:5219

    Google Scholar 

  95. Knowles PJ, Hampel C, Werner HJ (2000) J Chem Phys 112:3106

    CAS  Google Scholar 

  96. Amos RD, Andrews JS, Handy NC, Knowles PJ (1991) Chem Phys Lett 185:256

    CAS  Google Scholar 

  97. Lauderdale WJ, Stanton JF, Gauss J, Watts JD, Bartlett RJ (1991) Chem Phys Lett 187:21

    CAS  Google Scholar 

  98. Kutzelnigg W (1985) Theor Chim Acta 68:445

    CAS  Google Scholar 

  99. Klopper W, Kutzelnigg W (1987) Chem Phys Lett 134:17

    CAS  Google Scholar 

  100. Klopper W, Kutzelnigg W (1990) J Phys Chem 94:5625

    CAS  Google Scholar 

  101. Klopper W (1991) Chem Phys Lett 186:583

    CAS  Google Scholar 

  102. Klopper W, Röhse R, Kutzelnigg W (1991) Chem Phys Lett 178:455

    CAS  Google Scholar 

  103. Kutzelnigg W, Klopper W (1991) J Chem Phys 94:1985

    CAS  Google Scholar 

  104. Termath V, Klopper W, Kutzelnigg W (1991) J Chem Phys 94:2002

    CAS  Google Scholar 

  105. Klopper W, Samson CCM (2002) J Chem Phys 116:6397

    CAS  Google Scholar 

  106. Valeev EF (2004) Chem Phys Lett 395:190

    CAS  Google Scholar 

  107. Ten-no S (2004) Chem Phys Lett 398:56

    CAS  Google Scholar 

  108. May AJ, Manby FR (2004) J Chem Phys 121:4479

    CAS  Google Scholar 

  109. Tew DP, Klopper W (2005) J Chem Phys 123:074101

    Google Scholar 

  110. Werner HJ, Adler TB, Manby FR (2007) J Chem Phys 126:164102

    Google Scholar 

  111. Adler TB, Knizia G, Werner HJ (2007) J Chem Phys 127:221106

    Google Scholar 

  112. Knizia G, Werner HJ (2008) J Chem Phys 128:154103

    Google Scholar 

  113. Werner HJ, Manby FR (2006) J Chem Phys 124:054114

    Google Scholar 

  114. Manby FR, Werner HJ, Adler TB, May AJ (2006) J Chem Phys 124:094103

    Google Scholar 

  115. Werner HJ (2008) J Chem Phys 129:101103

    Google Scholar 

  116. Kato T (1957) Commun Pure Appl Math 10:151

    Google Scholar 

  117. Pack RT, Byers Brown W (1966) J Chem Phys 45:556

    CAS  Google Scholar 

  118. Ten-no S (2004) J Chem Phys 121:117

    CAS  Google Scholar 

  119. Schütz M, Lindh R, Werner HJ (1999) Mol Phys 96:719

    Google Scholar 

  120. Boys SF, Shavitt I, University of Wisconsin (1959) Report WIS-AF-13

    Google Scholar 

  121. Whitten JL (1973) J Chem Phys 58:4496

    CAS  Google Scholar 

  122. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    CAS  Google Scholar 

  123. Früchtl HA, Kendall RA, Harrison RJ, Dyall KG (1997) Int J Quantum Chem 64:63

    Google Scholar 

  124. Weigend F (2002) Phys Chem Chem Phys 4:4285

    CAS  Google Scholar 

  125. Polly R, Werner HJ, Manby FR, Knowles PJ (2004) Mol Phys 102:2311

    CAS  Google Scholar 

  126. Loibl S, Manby FR, Schütz M (2010) Mol Phys 108:477

    CAS  Google Scholar 

  127. Vahtras O, Almlöf J, Feyereisen MW (1993) Chem Phys Lett 213:514

    CAS  Google Scholar 

  128. Feyereisen MW, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359

    CAS  Google Scholar 

  129. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143

    CAS  Google Scholar 

  130. Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    CAS  Google Scholar 

  131. Werner HJ, Manby FR, Knowles P (2003) J Chem Phys 118:8149

    CAS  Google Scholar 

  132. Hättig C, Weigend F (2000) J Chem Phys 113:5154

    Google Scholar 

  133. Manby FR (2003) J Chem Phys 119:4607

    CAS  Google Scholar 

  134. Rendell AP, Lee TJ (1994) J Chem Phys 101:400

    CAS  Google Scholar 

  135. Schütz M, Manby FR (2003) Phys Chem Chem Phys 5:3349

    Google Scholar 

  136. Heßelmann A, Jansen G, Schütz M (2005) J Chem Phys 122:014103

    Google Scholar 

  137. Bukowski R, Podeszwa R, Szalewicz K (2005) Chem Phys Lett 414:111

    CAS  Google Scholar 

  138. Korona T, Jeziorski B (2008) J Chem Phys 128:144107

    Google Scholar 

  139. Korona T (2009) J Chem Theory Comput 5:2663

    CAS  Google Scholar 

  140. Dunlap BI (2000) Phys Chem Chem Phys 2:2113

    CAS  Google Scholar 

  141. Dunlap BI (2000) J Mol Struct THEOCHEM 529:37

    CAS  Google Scholar 

  142. Dunlap BI (2000) J Mol Struct THEOCHEM 501–502:221

    Google Scholar 

  143. Christiansen O, Jørgensen P, Hättig C (1998) Int J Quantum Chem 68:1

    CAS  Google Scholar 

  144. Wheatley RJ (2008) J Comput Chem 29:445

    CAS  Google Scholar 

  145. Thouless DJ (1960) Nucl Phys 21:225

    CAS  Google Scholar 

  146. Handy NC, Schaefer HF III (1984) J Chem Phys 81:5031

    CAS  Google Scholar 

  147. Jørgensen P, Helgaker T (1988) J Chem Phys 89:1560

    Google Scholar 

  148. Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135

    CAS  Google Scholar 

  149. Davidson ER (1975) J Comput Phys 17:87

    Google Scholar 

  150. Hirao K, Nakatsuji H (1982) J Comput Phys 45:246

    Google Scholar 

  151. Crawford DT, King RA (2002) Chem Phys Lett 366:611

    CAS  Google Scholar 

  152. Korona T, Werner HJ. Unpublished

    Google Scholar 

  153. Butscher W, Kammer WE (1976) J Comput Phys 20:313

    Google Scholar 

  154. Hättig C, Köhn A (2002) J Chem Phys 117:6939

    Google Scholar 

  155. Köhn A, Hättig C (2003) J Chem Phys 119:5021

    Google Scholar 

  156. Almlöf J (1991) Chem Phys Lett 181:319

    Google Scholar 

  157. Häser M, Amlöf J (1992) J Chem Phys 96:489

    Google Scholar 

  158. Rauhut G, Azhary AE, Eckert F, Schumann U, Werner HJ (1999) Spectrochim Acta A 55:647

    Google Scholar 

  159. Rauhut G, Werner HJ (2003) Phys Chem Chem Phys 5:2001

    CAS  Google Scholar 

  160. Hrenar T, Werner HJ, Rauhut G (2005) Phys Chem Chem Phys 7:3123

    CAS  Google Scholar 

  161. Hrenar T, Rauhut G, Werner HJ (2006) J Phys Chem A 110:2060

    CAS  Google Scholar 

  162. Hrenar T, Werner HJ, Rauhut G (2007) J Chem Phys 126:134108

    Google Scholar 

  163. Gauss J, Werner HJ (2000) Phys Chem Chem Phys 2:2083

    CAS  Google Scholar 

  164. Kaminsky J, Mata RA, Werner HJ, Jensen F (2008) Mol Phys 106:1899

    CAS  Google Scholar 

  165. Claeyssens F, Harvey JN, Manby FR, Mata RA, Mulholland AJ, Ranaghan KE, Schütz M, Thiel S, Thiel W, Werner HJ (2006) Angew Chem 118:7010

    Google Scholar 

  166. Mata RA, Werner HJ, Thiel S, Thiel W (2008) J Chem Phys 128:025104

    Google Scholar 

  167. Dieterich JM, Werner HJ, Mata RA, Metz S, Thiel W (2010) J Chem Phys 132:035101

    Google Scholar 

  168. Harvey JN (2010) Faraday Discuss 145:487

    CAS  Google Scholar 

  169. Bernardi F, Boys SF (1970) Mol Phys 19:553

    Google Scholar 

  170. Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213

    Google Scholar 

  171. Schütz M, Rauhut G, Werner HJ (1998) J Phys Chem A 102:5997

    Google Scholar 

  172. Hartke B, Schütz M, Werner HJ (1998) J Chem Phys 239:561

    CAS  Google Scholar 

  173. Hill JG, Platts JA, Werner HJ (2006) Phys Chem Chem Phys 8:4072

    CAS  Google Scholar 

  174. Hill JG, Platts JA (2007) J Chem Theory Comput 3:80

    CAS  Google Scholar 

  175. Hill JG, Platts JA (2008) J Chem Phys 129:134101

    Google Scholar 

  176. Hill JG, Platts JA (2008) Phys Chem Chem Phys 10:2785

    CAS  Google Scholar 

  177. Hill JG, Platts JA (2009) Chem Phys Lett 479:279

    CAS  Google Scholar 

  178. Schemmel D, Schütz M (2007) J Chem Phys 127:174304

    Google Scholar 

  179. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94:1887

    CAS  Google Scholar 

  180. Runeberg N, Schütz M, Werner HJ (1999) J Chem Phys 110:7210

    CAS  Google Scholar 

  181. Magnko L, Schweizer M, Rauhut G, Schütz M, Stoll H, Werner HJ (2002) Phys Chem Chem Phys 4:1006

    CAS  Google Scholar 

  182. Riedel S, Pyykkø P, Mata RA, Werner HJ (2005) Chem Phys Lett 405:148

    CAS  Google Scholar 

  183. Langlet J, Caillet J, Berges J, Reinhardt P (2003) J Chem Phys 118:6157

    CAS  Google Scholar 

  184. Grimme S, Mueck-Lichtenfeld C, Antony J (2008) Phys Chem Chem Phys 10:3327

    CAS  Google Scholar 

  185. Grimme S (2003) J Chem Phys 118:9095

    CAS  Google Scholar 

  186. Schemmel D, Schütz M (2010) J Chem Phys 132:174303

    Google Scholar 

  187. Adler TB, Werner HJ (2010) to be published

    Google Scholar 

  188. Peterson KA, Adler TB, Werner HJ (2008) J Chem Phys 128:084102

    Google Scholar 

  189. Yum J, Hagberg DP, Moon S, Karlsson KM, Marinado T, Sun L, Hagfeldt A, Nazeeruddin MK, Grätzel M (2009) Angew Chem Int Ed 48:1576

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Korona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Korona, T., Kats, D., Schütz, M., Adler, T.B., Liu, Y., Werner, HJ. (2011). Local Approximations for an Efficient and Accurate Treatment of Electron Correlation and Electron Excitations in Molecules. In: Zalesny, R., Papadopoulos, M., Mezey, P., Leszczynski, J. (eds) Linear-Scaling Techniques in Computational Chemistry and Physics. Challenges and Advances in Computational Chemistry and Physics, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2853-2_14

Download citation

Publish with us

Policies and ethics