Skip to main content

Specific Mechanotransduction Signaling Involved in Myogenic Responses of the Cerebral Arteries

  • Chapter
  • First Online:
Mechanosensitivity of the Heart

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 3))

Abstract

The cerebral artery is known to be particularly sensitive to mechanoreception in the form of blood pressure, blood flow, and other hemodynamic forces. Stretching and intraluminal pressurization, which might mimic an acute and/or chronic change in blood pressure, induce many different responses, including contraction, activation of various kinases and ionic channels, production of various vasoactive substances, gene expression, and phenotype changes. Here, we briefly discuss specific mechanotransduction signaling pathways involved in the myogenic responses of cerebral arteries. We emphasize that it is important to recognize mechanical forces and control them not only to improve our knowledge of cardiovascular system in physiologic and pathophysiologic conditions but also for the development of new therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn D-S Choi S-K Kim Y-H Cho Y-E Shin HM Morgan KG Lee Y-H (2007) Enhanced stretch-induced myogenic tone in the basilar artery of spontaneously hypertensive rats. J Vasc Res 44:182–191.

    Article  PubMed  Google Scholar 

  • Aksoy MO Mras S Kamm KE Murphy RA (1983) Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol 245:C255–C270.

    CAS  PubMed  Google Scholar 

  • Amano S Ishikawa T Nakayama K (2005) Facilitation of L-type Ca2+ currents by fluid flow in rabbit cerebral artery myocytes. J Pharmacol Sci 98:425–429.

    Article  CAS  PubMed  Google Scholar 

  • Bayliss WM (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:220–231.

    CAS  PubMed  Google Scholar 

  • Beech DJ Muraki K Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685–706.

    CAS  PubMed  Google Scholar 

  • Bengur AR Robinson EA Appella E Sellers JR (1987) Sequence of the sites phosphorylated by protein kinase C in the smooth muscle myosin light chain. J Biol Chem 262:7613–7617.

    CAS  PubMed  Google Scholar 

  • Bornancin F Parker PJ (1997) Phosphorylation of protein kinase C-α on serine 657 controls the accumulation of active enzyme and contributes to its phosphatase-resistant state. J Biol Chem 272:3544–3549.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau RT Garduno R Lin TJ (2002) Protein phosphatase 2A and protein kinase C are physically associated and are involved in Pseudomonas aeruginosa-induced interleukin 6 production by mast cells. J Biol Chem 277:5322–5329.

    Article  CAS  PubMed  Google Scholar 

  • Brayden JE Earley S Nelson MT Reading S (2008) Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 35: 1116–1120.

    Article  CAS  PubMed  Google Scholar 

  • Budzyn K Marley PD Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104.

    Article  CAS  PubMed  Google Scholar 

  • Canham PB (1977) Orientation of cerebral vascular smooth muscle, mathematically modelled. J Biomech 10:241–251.

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79:387–423.

    CAS  PubMed  Google Scholar 

  • de Lanerolle P Nishikawa M (1988) Regulation of embryonic smooth muscle myosin by protein kinase C. J Biol Chem 263:9071–9074.

    PubMed  Google Scholar 

  • Dessy C Matsuda N Hulvershorn J Sougnez C Sellke FW Morgan KG (2000) Evidence for involvement of the PKC- isoforms in myogenic contractions of the coronary microcirculation. Am J Physiol 279:H916–H923.

    Google Scholar 

  • Dopico AM Kirber MT Singer JJ Walsh JV Jr (1994) Membrane stretch directly activates large conductance Ca2+-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertens 7:82–89.

    CAS  PubMed  Google Scholar 

  • Earley S Waldron BJ Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929.

    Article  CAS  PubMed  Google Scholar 

  • Eto M Kitazawa T Yazawa M Mukai H Ono Y Brautigan DL (2001) Histamine-induced vasoconstriction involves phosphorylation of a specific inhibitor protein for myosin phosphatase by protein kinase C and isoforms. J Biol Chem 276:29072–29078.

    Article  CAS  PubMed  Google Scholar 

  • Fleckenstein A (1983) Calcium Antagonism in Heart and Smooth Muscle, Experimental Facts and Therapeutic Prospects. 7.4. Use of calcium antagonists in the treatment of hypertension. John Wiley and Sons, New York, pp. 306–311.

    Google Scholar 

  • Gebremedhin D Harder DR Pratt PF Campbell WB (1998) Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P450 metabolite. J Vasc Res 35: 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Gebremedhin D Lange AR Lowry TF Taheri MR Birks EK Hudetz AG Narayanan J Falck JR Okamoto H Roman RJ Nithipatikom K Campbell WB Harder DR (2000) Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 87:60–65.

    CAS  PubMed  Google Scholar 

  • Gong MC Fujihara H Somlyo AV Somlyo AP (1997) Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem 272:10704–10709.

    Article  CAS  PubMed  Google Scholar 

  • Gschwendt M Kittstein W Marks F (1994) Elongation factor-2 kinase: effective inhibition by the novel protein kinase inhibitor rottlerin and relative insensitivity towards staurosporine. FEBS Lett 338:85–88.

    Article  CAS  PubMed  Google Scholar 

  • Halpern W Osol G Coy GS (1984) Mechanical behavior of pressurized in vitro prearteriolar vessels determined with a video system. Ann Biomed Eng 12:463–479.

    Article  CAS  PubMed  Google Scholar 

  • Hansen-Schwartz J Vajkoczy P Macdonald RL Pluta RM Zhang JH (2007) Cerebral vasospasm: looking beyond vasoconstriction. Trends Pharmacol Sci 28:252–256.

    Article  CAS  PubMed  Google Scholar 

  • Hansra G Bornancin F Whelan R Hemmings BA Parker PJ (1996) 12-O-tetradecanoylphorbol-13-acetate-induced dephosphorylation of protein kinase C correlates with the presence of a membrane-associated protein phosphatase 2A heterotrimer. J Biol Chem 271:32785–32788.

    Article  CAS  PubMed  Google Scholar 

  • Harder DR Gebremedhin D Narayanan J Jefcoat C Falck JR Campbell WB Roman R (1994) Formation and action of a P-450 metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol 266:H2098–H2107.

    CAS  PubMed  Google Scholar 

  • Heistad DD Kontos HA (1982) Cerebral circulation. In: Bohr DF Somlyo AP Sparks H (eds.). Handbook of Physiology – The Cardiovascular System III, American Physiological Society, Bethesda, pp. 137–182.

    Google Scholar 

  • Hong T Wang Y Wang HT Wang H (2008) Inhibitory effect of gap junction blockers on cerebral vasospasm. J Neurosurg 108:551–557.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa K Ito M Hartshorne DJ (1996) Phosphorylation of the large subunit of myosin phosphatase and inhibition of phosphatase activity. J Biol Chem 271:4733–4740.

    Article  CAS  PubMed  Google Scholar 

  • Ikebe M Hartshorne DJ (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260:10027–10031.

    CAS  PubMed  Google Scholar 

  • Ikebe M Hartshorne DJ Elzinga M (1986) Identification, phosphorylation, and dephosphorylation of second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem 261:36–39.

    CAS  PubMed  Google Scholar 

  • Imig JD Zou AP Stec DE Harder DR Falck JR Roman RJ (1996) Formation and action 20-hydroxyeicosatetraenoic acid in the renal microcirculation. Am J Physiol 270: R221–R227.

    Google Scholar 

  • Inoue R Jensen LJ Shi J Morita H Nishida M Honda A Ito Y (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99:119–131.

    Article  CAS  PubMed  Google Scholar 

  • Intengan HD Schiffrin EL (2000) Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36: 312–318.

    CAS  PubMed  Google Scholar 

  • Ishiguro M Morielli AD Zvarova K Tranmer BI Penar PL Wellman GC (2006) Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res 99:1252–1260.

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro M Wellman TL Honda A Russell SR Tranmer BI Wellman GC (2005) Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res 96:419–426.

    Article  CAS  PubMed  Google Scholar 

  • Kashihara T Nakayama K Ishikawa T. (2008) Distinct roles of protein kinase C isoforms in myogenic constriction of rat posterior cerebral arteries. J Pharmacol Sci 108:446–454.

    Google Scholar 

  • Kim GH Kellner CP Hahn DK Desantis BM Musabbir M Starke RM Rynkowski M Komotar RJ Otten ML Sciacca R Schmidt JM Mayer SA Connolly ES Jr (2008) Monocyte chemoattractant protein-1 predicts outcome and vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg 109:38–43.

    Article  CAS  PubMed  Google Scholar 

  • Kimura K Ito M Amano M Chihara K Fukata Y Nakafuku M Yamamori B Feng J Nakano T Okawa K Iwamatsu A Kaibuchi K (1996) Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science 273:245–248.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M Obara K Sasase T Ishikawa T Tanabe Y Nakayama K (2000) Specific inhibition of stretch-induced increase in L-type calcium channel currents by herbimycin A in canine basilar arterial myocytes. Br J Pharmacol 130:923–931.

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa T Takizawa N Ikebe M Eto M (1999) Reconstitution of protein kinase C-induced contractile Ca2+ sensitization in triton X-100-demembranated rabbit arterial smooth muscle. J Physiol 520:139–152.

    Article  CAS  PubMed  Google Scholar 

  • Koide M Nishizawa S Ohta S Yokoyama T Namba H (2002) Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase. Neurosurgery 51:1468–1474.

    Article  PubMed  Google Scholar 

  • Lagaud G Karicheti V Knot HJ Christ GJ Laher I (2002) Inhibitors of gap junctions attenuate myogenic tone in cerebral arteries. Am J Physiol 283:H2177–H2186.

    CAS  Google Scholar 

  • Laher I Zhang JH (2001) Protein kinase C and cerebral vasospasm. J Cereb Blood Flow Metab 21:887–906.

    Article  CAS  PubMed  Google Scholar 

  • Lange A Gebremedhin D Narayanan J Harder D (1997) 20-Hydroxyeicosatetraenoic acid-induced vasoconstriction and inhibitin of potassium current in cerebral vascular smooth muscle is dependent on actovation of protein kinase C. J Biol Chem 272:27345–27352.

    Article  CAS  PubMed  Google Scholar 

  • Laporte R Hui A, and Laher I (2004) Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 56:439–513.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL Kassell NF Mayer S Schmiedek P Weidauer S Pasqualin A (2007a) Randomized trial of clazosentan for prevention of vasospasm after aneurismal subarachnoid hemorrhage. Stroke 38:462. (Abstract)

    Article  CAS  Google Scholar 

  • Macdonald RL Pluta RM Zhang JH (2007b) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3:256–263.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald RL Weir B (2001) Structure, physiology, and biochemistry of vascular smooth muscle. In: Macdnald RL Weir B (eds.). Cerebral Vasospasm. Academic Press, Sandiego, pp. 311–352.

    Chapter  Google Scholar 

  • MacKenzie ET Strandgaard S Graham DI Jones JV Harper AM Farrar JK (1976) Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ Res 39:33–41.

    CAS  PubMed  Google Scholar 

  • Meininger GA Davis MJ (1992) Cellular mechanisms involved in the vascular myogenic response. Am J Physiol 263:H647–H659

    CAS  PubMed  Google Scholar 

  • Mizuhira V (1976) Elemental analysis of biological specimens by electron probe X-ray microanalysis. Acta Histochem Cytochem 9:69–87.

    CAS  Google Scholar 

  • Morita H Honda A Inoue R Ito Y Abe K Nelson MT Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426.

    Article  CAS  PubMed  Google Scholar 

  • Murakami S Yamamoto M Fujishima K Abe M Ishikawa M Ajio K Ouch S (2002) A potent intrgurin V 3 antagonist, CP4632 exhibited cardioprotective effect in hamster ischemia/reperfusion model. Jpn J Pharmacol 88(Supl I):261P. (Abstract)

    Google Scholar 

  • Muraki K Iwata Y Katanosaka Y Ito T Ohya S Shigekawa M Imaizumi Y (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93: 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K (1982) Calcium-dependent contractile activation of cerebral artery produced by quick stretch. Am J Physiol 242:H760–H768.

    CAS  PubMed  Google Scholar 

  • Nakayama K (1988) Active and passive mechanical properties of ring and spiral segments of isolated dog basilar artery assessed by electrical and pharmacological stimulations. Blood Vessels 25:285–298.

    CAS  PubMed  Google Scholar 

  • Nakayama K Ishigai Y Uchida H Tanaka Y (1991) Potentiation by endothelin-1 of 5-hydroxytryptamine-induced contraction in coronary artery of the pig. Br J Pharmacol 104: 978–986.

    CAS  PubMed  Google Scholar 

  • Nakayama K Kashiwabara T Yamada S Tanaka Y (1989b) Assessment in pig coronary artery of long-lasting and potent calcium antagonistic actions of the novel dihydropyridine derivative mepirodipine hydrochloride. Arzneim-Forsch/Drug Res 39:50–55.

    CAS  Google Scholar 

  • Nakayama K Obara K Tanabe Y Saito M Ishikawa T Nishizawa S (2003) Interactive role of tyrosine kinase, protein kinase C, and Rho/Rho kinase systems in the mechanotransduction of vascular smooth muscles. Biorheology 40:307–314.

    CAS  PubMed  Google Scholar 

  • Nakayama K Suzuki S Sugi H (1986) Physiological and ultrastructural studies on the mechanism of stretch-induced contractile activation in rabbit cerebral artery smooth muscle. Jpn J Physiol 36:745–760.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K Tanaka Y (1989) Myogenic contraction and relaxation of arterial smooth muscle. In: Aoki K (ed.). Essential Hypertension 2, Springer-Verlag, Tokyo, pp. 83–93.

    Google Scholar 

  • Nakayama K Tanaka Y (1991) Specific signal transduction in the stretch-induced tone of vascular tissue. In: Mulvany MJ Aalkjaer C Heagerty AM Nyborg NCB Strandgaard S (eds.). Resistance Arteries, Structure and Function, Elsevier Science Publishers B.V., Amsterdam, pp. 86–90.

    Google Scholar 

  • Nakayama K Tanaka Y (1993) Stretch-induced contraction and Ca2+ mobilization in vascular tissue. Biological Signals 2:241–252.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K Tanaka Y Fujishima K (1989a) Potentiation of stretch-induced myogenic tone of dog cerebral artery by hemolysate and the inhibitory action of calcium antagonists. Eur J Pharmacol 169:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Nilius B Prenen J Tang J Wang C Owsianik G Janssens A Voets T Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433.

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa M Hidaka H Adelstein RS (1983) Phosphorylation of smooth muscle heavy meromyosin by calcium-activated, phospholipid-dependent protein kinase. J Biol Chem 258:14069–14072.

    CAS  PubMed  Google Scholar 

  • Nishizawa S Koide M Obara K Nakayama K Yamaguchi M (2004) Protein kinase C isoforms, Rho kinase, and myosin light chain phosphorylation as mechanisms of cerebral vasospasm after subarachnoid hemorrhage. In: Macdonald RL (ed.). Cerebral Vasospasm-Advances in Research and Treatment, Thieme, New York/Stuttgart, pp. 36–40.

    Google Scholar 

  • Nishizawa S Koide M Ymaguchi-Okada M (2008) The role of cross-talk mechanism in the signal transduction systems in the pathophysiology of the cerebral vasospasm after subarachnoid haemorrhage- what we know and what we do not know. Acta Neurochir suppl (Wien) 104: 59–63

    Article  Google Scholar 

  • Nishizawa S Laher I (2005) Signaling mechanisms in cerebral vasospasm. Trends Cardiovasc Med 15:24–34.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa S Obara K Nakayama K Koide M Yokoyama T Yokota N Ohta S (2000) Protein kinase C and are involved in the development of vasospasm after subarachnoid hemorrhage. Eur J Pharmacol 398:113–119.

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa S Obara K Koide M Nakayama K Ohta S Yokoyama T (2003) Attenuation of canine cerebral vasospasm after subarachnoid hemorrhage by protein kinase C inhibitors despite augmented phosphorylation of myosin light chain. J Vasc Res 40:169–178.

    Article  CAS  PubMed  Google Scholar 

  • Obara K Hata S Sato K Koide M Ishii K Nakayama K (1999) Contractile potentiation by endothelin-1 involves protein kinase C-δ activity in porcine coronary artery. Jpn J Physiol 49:175–183.

    Article  CAS  PubMed  Google Scholar 

  • Obara K Koide M Nakayama K (2002) 20-Hydroxyeicosatetraenoic acid potentiates stretch-induced contraction of canine basilar artery via PKCα -mediated inhibition of KCa channel. Br J Pharmacol 137:1362–1370.

    Article  CAS  PubMed  Google Scholar 

  • Obara K Mitate A Nozawa K Watanabe M I to Y Nakayama K (2010) Interactive role of protein phosphatase 2A and protein kinase Cα in the stretch-induced triphosphorylation of myosin light chain in canine cerebral artery. J Vasc Res 47:115–127.

    Google Scholar 

  • Obara K Nishizawa S Koide M Mitate A Nakayama K (2004) Interactive role of protein kinase C isoforms and Rho kinase in vasospasm after experimental subarachnoid hemorrhage. In: Macdonald RL (ed.). Cerebral Vasospasm-Advances in Research and Treatment, Thieme, New York/Stuttgart, pp. 138–141.

    Google Scholar 

  • Obara K Nishizawa S Koide M Nozawa K Mitate A Ishikawa T Nakayama K (2005) Interactive role of protein kinase C-δ with rho-kinase in the development of cerebral vasospasm in a canine two-hemorrhage model. J Vasc Res 42:67–76.

    Article  CAS  PubMed  Google Scholar 

  • Obara K Saito M Yamanaka A Uchino M Nakayama K (2001) Involvement of different activator Ca2+ in the rate-dependent stretch-induced contractions of canine basilar artery. Jpn J Physiol 51:327–335.

    Article  CAS  PubMed  Google Scholar 

  • Obara K Uchino M Koide M Yamanaka A Nakayama K (2006) Stretch-induced triphosphorylation of myosin light chain and myogenic tone in canine basilar artery. Eur J Pharmacol 534: 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32:275–292.

    CAS  PubMed  Google Scholar 

  • Peters MW Canham PB Finlay HM (1983) Circumferential alignment of muscle cells in the tunica media of the human brain artery. Blood Vessels 20:221–233.

    CAS  PubMed  Google Scholar 

  • Rembold CM Murphy RA (1990) Latch-bridge model in smooth muscle: [Ca2+]i can quantitatively predict stress. Am J Physiol 259:C251–C257.

    CAS  PubMed  Google Scholar 

  • Ricciarelli R Azzi A (1998) Regulation of recombinant PKC activity by protein phosphatase 1 and protein phosphatase 2A. Arch Biochem Biophys 355:197–200.

    Article  CAS  PubMed  Google Scholar 

  • Ricciarelli R Tasinato A Clément S Ozer NK Boscoboinik D Azzi A (1998) α-Tocopherol specifically inactivates cellular protein kinase C by changing its phosphorylation state. Biochem J 334:243–249.

    CAS  PubMed  Google Scholar 

  • Rosolowsky M Campbell WB (1993) Role of PGI2 and epoxyeicosatrienoic acids in the relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 280: H2470–H2477.

    Google Scholar 

  • Schermuly RT Dony E Ghofrani HA Pullamsetti S Savai R Roth M Sydykov A Lai YJ Weissmann N Seeger W Grimminger F (2005) Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115:2188–2821.

    Article  CAS  Google Scholar 

  • Schretzenmayr A (1933) Ãœber regulatorische Vorgange an Muskelarterien. Pflügers Arch 232: 743–748.

    Article  Google Scholar 

  • Singer HA Oren JW Benscoter HA (1989) Myosin light chain phosphorylation in 32P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine. J Biol Chem 264: 21215–21222.

    CAS  PubMed  Google Scholar 

  • Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKC. Trends Pharmacol Sci 28: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Somlyo AP Somlyo AV (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522:177–185.

    Article  CAS  PubMed  Google Scholar 

  • Spassova MA Hewavitharana T Xu W Soboloff J Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–16591.

    Article  CAS  PubMed  Google Scholar 

  • Sun H Kanamaru K Ito M Suzuki H Kojima T Waga S Kureishi Y Nakano T (1998) Myosin light chain phosphorylation and contractile proteins in a canine two-hemorrhage model of subarachnoid hemorrhage. Stroke 29:2149–2154.

    CAS  PubMed  Google Scholar 

  • Sutton TA Haeberle JR (1990) Phosphorylation by protein kinase C of the 20000-dalton light chain of myosin in intact and chemically skinned vascular smooth muscle. J Biol Chem 265: 2749–2754.

    CAS  PubMed  Google Scholar 

  • Suzuki S Sugi H (1989) Evidence for extracellular localization of activator calcium in dog coronary artery smooth muscle as studied by the pyroantimonate method. Cell Tissue Res 257:237–246.

    Article  CAS  PubMed  Google Scholar 

  • Symon L (1967) A comparative study of middle cerebral pressure in dogs and macaques. J Physiol 191:449–465.

    CAS  PubMed  Google Scholar 

  • Tanabe Y Morikawa Y Kato T Kanai S Watakabe T Nishijima A Iwata H Isobe K Ishizaki M Nakayama K (2006) Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung. Naunyn Schmiedebergs Arch Pharmacol 374:235–248.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe Y Saito M Ueno A Nakamura M Takeishi K Nakayama K (2000) Mechanical stretch augments PDGF receptors expression and protein tyrosine phosphorylation in pulmonary artery tissue and smooth muscle cells. Mol Cell Biochem 215: 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y Hata S Ishiro H Ishii K Nakayama K (1994a) Stretching releases Ca2+ from intracellular storage sites in canine cerebral arteries. Can J Physiol Pharmacol 72:19–24.

    CAS  PubMed  Google Scholar 

  • Tanaka Y Hata S Ishiro H Ishii K Nakayama K (1994b) Quick stretch increases the production of inositol 1,4,5-trisphosphate (IP3) in porcine coronary artery. Life Sci 55:227–235.

    Article  CAS  PubMed  Google Scholar 

  • Walmsley JG Canham PB (1979) Orientation of nuclei as indicators of smooth muscle cell alignment in the cerebral artery. Blood Vessels 16:43–51.

    CAS  PubMed  Google Scholar 

  • Welsh DG Morielli AD Nelson MT Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250.

    Article  CAS  PubMed  Google Scholar 

  • Welsh DG Nelson MT Eckman DM Brayden JE (2000) Swelling-activated cation channels mediate depolarization of rat cerebrovascular smooth muscle by hyposmolarity and intravascular pressure. J Physiol 527:139–148.

    Article  CAS  PubMed  Google Scholar 

  • Wickman G Lan C Vollrath B (2003) Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res 92:809–816.

    Article  CAS  PubMed  Google Scholar 

  • Wu BN Luykenaar KD Brayden JE Giles WR Corteling RL Wiehler WB Welsh DG (2007) Hyposmotic challenge inhibits inward rectifying K+ channels in cerebral arterial smooth muscle cells. Am J Physiol 292:H1085–H1094.

    CAS  Google Scholar 

  • Yamaguchi-Okada M Nishizawa S Koide M Nonaka Y (2005) Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J Appl Physiol 99:2045–2052.

    Article  PubMed  Google Scholar 

  • Yamazaki J Duan D Janiak R Kuenzli K Horowitz B Hume JR (1998) Functional and molecular expression of volume-regulated chloride channels in canine vascular smooth muscle cells. J Physiol 507:729–736.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki J Kitamura K (2003) Intercellular electrical coupling in vascular cells present in rat intact cerebral arterioles. J Vasc Res 40:11–27.

    Article  PubMed  Google Scholar 

  • Yano S Ishikawa T Tsuda H Obara K Nakayama K (2005) Ionic mechanism for contractile response to hyposmotic challenge in canine basilar arteries. Am J Physiol 288:C702–C709.

    Article  CAS  Google Scholar 

  • Yeon D-S Kim J-S Ahn D-S Kwon S-C Kang B-S Morgan KG Lee Y-H (2002) Role of protein kinase C- or RhoA-induced Ca2+ sensitization in stretch-induced myogenic tone. Cadiovasc Res 53:431–438.

    Article  CAS  Google Scholar 

  • Zou AP Fleming JT Falck JR Jacobs ER Gebremedhin D Harder DR Roman RJ (1996) 20-HETE is an endogenous inhibitor of the large-conductance Ca2+-activated K+ channel in renal arterioles. Am J Physiol 270:R228–R237.

    CAS  PubMed  Google Scholar 

  • Zou H Ratz PH Hill MA (1995) Role of myosin phosphorylation and [Ca2+]i in myogenic reactivity and arteriolar tone. Am J Physiol 269:H1590–H1596.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was supported in part by grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and by grants from the Shizuoka Research and Development Foundation. We also appreciate Iwate Medical University and University of Shizuoka for their continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Nakayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nakayama, K., Obara, K., Ishikawa, T., Nishizawa, S. (2010). Specific Mechanotransduction Signaling Involved in Myogenic Responses of the Cerebral Arteries. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitivity of the Heart. Mechanosensitivity in Cells and Tissues, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2850-1_17

Download citation

Publish with us

Policies and ethics