Skip to main content

GPC-Based Programmable Optical Micromanipulation

  • Chapter
Generalized Phase Contrast

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 146))

  • 997 Accesses

The realization that the radiation pressure force of laser light, although miniscule in absolute terms, can potentially generate quite large accelerations in microscopic particles, prompted Arthur Ashkin to experimentally demonstrate its manifestations [1]. This proved seminal in developing the field of optical trapping and manipulation. Small particles ranging from tens of micrometers down to atomic dimensions have since been optically trapped, thus encompassing lengthscales with multidisciplinary interest in biology, chemistry, medicine and physics. A single-beam optical trap finds utility in a wide range of inter-disciplinary research and is a practical tool for the measurement of interaction forces and manipulation of cells, sub-cellular structures and individual DNA-molecules [2, 3, 4], as well as in the assembly of microstructures on the micro- and nano-scale [5]. With all the applications of a single beam trap, it becomes exciting to envision a multi-beam system that can, for example, trap and manipulate an array of particles simultaneously yet independently. The multiple beams can drive processes in parallel or work in concert towards a common end such as in the assembly of microdevices, or the synchronous actuation of a complex microstructure. This highlights the need to generate multiple optical traps where the shape, size, position and intensity of each trap can be controlled individually and preferably manipulated in real-time.

The previous chapters have established the capacity of the generalized phase contrast approach to arbitrarily shape light laterally. Thus, GPC can naturally enable optical trapping systems and imbibe them with both the ability to create independently controllable optical traps and the flexibility to simultaneously render, in real time, arbitrary dynamics for these traps. The main advantage of the GPC approach lies in its encoding simplicity, where each point in the trapping plane maps to a unique point in the programmable modulator. In this chapter, we illustrate various systems to showcase the flexibility and versatility facilitated by this point-wise mapping scheme in optical trapping and micromanipulation. It is remarkable that the generalized formulation of GPC, which allows phase contrast to go beyond its traditional small-scale phase assessment, can also become an enabling tool for interactive microscopy where the user not only passively observes a microscopic system but also can dynamically manipulate it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  2. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).

    Article  ADS  Google Scholar 

  3. K. Svoboda and S. M. Block, “Biological application of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    Article  Google Scholar 

  4. M. D. Wang, H. Yun, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).

    Article  ADS  Google Scholar 

  5. R. E. Holmlin, M. Schiavoni, C. Y. Chen, S. P. Smith, M. G. Prentiss, and G. M. Whitesides, “Light-driven microfabrication: Assembly of multi-component, three-dimensional structures by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 39, 3503 (2000).

    Article  Google Scholar 

  6. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101–1103 (2002).

    Article  ADS  Google Scholar 

  7. P. Zemanek, A. Jonas, L. Sramek, and M. Liska, “Optical trapping of nanoparticles and microparticles by a Gaussian standing wave,” Opt. Lett. 24, 1448–1450 (1999).

    Article  ADS  Google Scholar 

  8. J. Arlt, V. Garces-Chavez, W. Sibbett, and K. Dholakia, “Optical micromanipulation using a Bessel light beam,” Opt. Commun. 197, 239–245 (2001).

    Article  ADS  Google Scholar 

  9. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743–745 (2002).

    Article  ADS  Google Scholar 

  10. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).

    Article  ADS  Google Scholar 

  11. Y. Ogura, K. Kagawa, and J. Tanida, “Optical manipulation of microscopic objects by means of vertical-cavity surface-emitting laser array sources,” Appl. Opt. 40, 5430–5435(2001).

    Article  ADS  Google Scholar 

  12. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Optical trapping of a metal-particle and a water droplet by a scanning laser-beam,” Appl. Phys. Lett. 60, 807–809 (1992).

    Article  ADS  Google Scholar 

  13. K. T. Gahagan and G. A. Swartzlander, “Trapping of low-index microparticles in an optical vortex,” J. Opt. Soc. Am. B. 15, 524–534 (1998).

    Article  ADS  Google Scholar 

  14. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,” J. Opt. Soc. Am. B 16, 533–537 (1999).

    Article  ADS  Google Scholar 

  15. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett. 26, 863–865 (2001).

    Article  ADS  Google Scholar 

  16. J. Glückstad and P. C. Mogensen, “Optimal phase contrast in common-path inter-ferometry,” Appl. Opt. 40, 268–282 (2001).

    Article  ADS  Google Scholar 

  17. P. Nissen, D. Nielsen, and N. Arneborg, “Viable Saccharomyces cerevisiae cells at high concentrations cause early growth arrest of non-Saccharomyces yeasts in mixed cultures by a cell-cell contact-mediated mechanism,” Yeast 20, 331–341 (2003).

    Article  Google Scholar 

  18. P. Nissen and N. Arneborg, “Characterization of early deaths of non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae,” Arch. Microbiol. 180, 257–263 (2003).

    Article  Google Scholar 

  19. C. Venturin, H. Boze, G. Moulin, and P. Galzy, “Glucose metabolism, enzymatic analysis and product formation in chemostat culture of Hanseniaspora uvarum,” Yeast 11, 327–336 (1995).

    Article  Google Scholar 

  20. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  21. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, “Demonstration of a fiber-optical light–force trap,” Opt. Lett. 18, 1867–1869 (1993).

    Article  ADS  Google Scholar 

  22. S. C. Grover, A.G. Skirtach, R. C. Gauthier, and C. P. Grover, “Automated single-cell sorting system based on optical trapping,” J. Biomed. Opt. 6, 14–22 (2001).

    Article  ADS  Google Scholar 

  23. E. Sidick, S. D. Collins, and A. Knoesen, “Trapping forces in a multiple-beam fiberoptic trap,” Appl. Opt. 36, 6423–6433 (1997).

    Article  ADS  Google Scholar 

  24. M. N. Liang, S. P. Smith, S. J. Metallo, I. S. Choi, M. Prentiss, and G. M. White-sides, “Measuring the forces involved in polyvalent adhesion of uropathogenic Es-cherichia coli to mannose-presenting surfaces,” Proc. Natl. Acad. Sci. U.S.A. 97, 13092–13096 (2000).

    Article  ADS  Google Scholar 

  25. G. Sinclair, P. Jordan, J. Leach, M. J. Padgett, and J. Cooper, “Defining the trapping limits of holographical optical tweezers,” J. Mod. Opt. 51, 409–414 (2004).

    Article  ADS  Google Scholar 

  26. M. M. Burns, J. -M. Fournier, and J. A. Golovchenko, “Optical matter — crystallization and binding in intense optical-fields,” Science 249, 749–754 (1990).

    Article  ADS  Google Scholar 

  27. J. Leach, G. Sinclair, P. Jordan, J. Courtial, M. J. Padgett, J. Cooper, and Z. J. Laczik, “3D manipulation of particles into crystal structures using holographic optical tweezers,” Opt. Express 12, 220–226 (2004).

    Article  ADS  Google Scholar 

  28. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).

    Article  ADS  Google Scholar 

  29. D. L. J.Vossen, A. van der Horst, M. Dogterom and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum. 75, 2960–2970 (2004).

    Article  ADS  Google Scholar 

  30. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, “One-dimensional optically bound arrays of microscopic particles,” Phys. Rev. Lett. 89, 283901 (2002).

    Article  ADS  Google Scholar 

  31. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Real-time three-dimensional optical micromanipulation of multiple particles and living cells,” Opt. Lett. 29, 2270–2272 (2004).

    Article  ADS  Google Scholar 

  32. P. J. Rodrigo, V. R. Daria, and J. Glückstad, ”Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86, 074103 (2005).

    Article  ADS  Google Scholar 

  33. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24,608–610 (1999).

    Article  ADS  Google Scholar 

  34. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12,5475–5480 (2004).

    Article  ADS  Google Scholar 

  35. J. W. Goodman, Introduction to Fourier Optics, Second Edition (McGraw-Hill, New York, 1996).

    Google Scholar 

  36. I. R. Perch-Nielsen, P. J. Rodrigo, and J. Glückstad, “Real-time interactive 3D manipulation of particles viewed in two orthogonal observation planes,” Opt. Express 18,2852–2857 (2005)

    Article  ADS  Google Scholar 

  37. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).

    Article  ADS  Google Scholar 

  38. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  39. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices — Micromachines can be created with higher resolution using two-photon absorption,” Nature 412, 697–698 (2001).

    Article  ADS  Google Scholar 

  40. S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82, 133–135 (2003).

    Article  ADS  Google Scholar 

  41. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induce rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64, 2209–2210 (1994).

    Article  ADS  Google Scholar 

  42. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).

    Article  ADS  Google Scholar 

  43. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653–4655 (2002).

    Article  ADS  Google Scholar 

  44. E. Higurashi, R. Sawada, and T. Ito, “Optically driven angular alignment of micro-components made of in-plane birefringent polyimide film based on optical angular momentum transfer,” J. Micromech. Microeng. 11, 140–145 (2001).

    Article  ADS  Google Scholar 

  45. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).

    Article  ADS  Google Scholar 

  46. Later in the peer-review process, we were made aware of a recent article [S.L. Neale, M. P. MacDonald, K. Dholakia and T. F. Krauss, “All-optical control of microflu-idic components using form birefringence”, Nat. Mat. 4, 530–533 (2005)] that shows rotation of a microfabricated structure in a circularly polarized light due the object's form birefringence.

    Google Scholar 

  47. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14 3323–3333 (1997).

    Article  ADS  Google Scholar 

  48. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).

    Article  ADS  Google Scholar 

  49. J. Glückstad, I. R. Perch-Nielsen, and P. J. Rodrigo, in preparation.

    Google Scholar 

  50. J. Glückstad, “Sorting particles with light” Nature Materials 3, 9–10 (2004).

    Article  ADS  Google Scholar 

  51. A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296, 1841 (2002).

    Article  ADS  Google Scholar 

  52. L. Kelemen, S. Valkai and P. Ormos, “Integrated optical motor,” Appl. Opt. 45, 2777–2780 (2006).

    Article  ADS  Google Scholar 

  53. J. Enger, M. Goksör, K. Ramser, P. Hagberg, and D. Hanstorp, “Optical tweezers applied to a microfluidic system”, Lab Chip, 4, 196–200 (2004).

    Article  Google Scholar 

  54. I. R. Perch-Nielsen, P. J. Rodrigo, C. A. Alonzo, and J. Glückstad, “Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment,” Opt. Express 14, 12199–12205 (2006).

    Article  ADS  Google Scholar 

  55. M. Gauthier, D. Heriban, D. Gendreau, S. Regnier, P. Lutz and N. Chaillet, “Micro-factory for submerged assembly: interests and architectures,” Proc. 5th Int. Workshop on Microfactories (2006).

    Google Scholar 

  56. J. J. Talghader, J. K. Tu and J. S. Smith, “Integration of fluidically self-assembled optoelectronic devices using silicon-based process,” IEEE Photon. Technol. Lett. 7, 1321–1323 (1995).

    Article  ADS  Google Scholar 

  57. K. Hosokawa, I. Shimoyama and H. Miura, “Two-dimensional micro-self-assembly using the surface tension of water,” Sens. Actuators A 57, 117–125 (1996).

    Article  Google Scholar 

  58. R. L. Eriksen, V. R. Daria, and J. Glückstad, ”Fully dynamic multiple-beam optical tweezers,” Opt. Express 10,597–602 (2002).

    ADS  Google Scholar 

  59. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glückstad, ”Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10,1550–1556 (2002).

    ADS  Google Scholar 

  60. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132–134 (1997).

    Article  ADS  Google Scholar 

  61. http://mathworld.wolfram.com/WallpaperGroups.html

  62. A. Terray, J. Oakey and D.W.M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81, 1555–1557 (2002).

    Article  ADS  Google Scholar 

  63. P. J. Rodrigo, L. Gammelgaard, P. Bøggild, I. R. Perch-Nielsen, and J. Glück-stad, ”Actuation of microfabricated tools using multiple GPC-based counterpropa-gating-beam traps,” Opt. Express 13,6899–6904 (2005).

    Article  ADS  Google Scholar 

  64. E. R. Lyons and G. J. Sonek, “Confinement and bistability in a tapered hemispheri-cally lensed optical fiber trap,” Appl. Phys. Lett. 66, 1584–1586 (1995).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

(2009). GPC-Based Programmable Optical Micromanipulation. In: Generalized Phase Contrast. Springer Series in Optical Sciences, vol 146. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2839-6_8

Download citation

Publish with us

Policies and ethics