Skip to main content

Safe and Reliable Design Methods for Metallic Components and Structures Design Methods

  • Conference paper
Security and Reliability of Damaged Structures and Defective Materials

Abstract

Tools available for structure design are various and are different according to the fact that the risk is associated with an eventual presence of defect and possibility of brittle fracture or a ductile failure. The following design tools are described: (1) allowable stress and safety factor, (2) linear fracture mechanics and safety factors, (3) crack driving force, (4) failure assessment diagram, (5) allowable strain, (6) critical gross strain, (7) strain based design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American National Standard Institute (ANSI)/American Society of Mechanical Engineers (ASME), 1984. Manual for determining strength of corroded pipelines, ASME B31G.

    Google Scholar 

  • American Society for Mechanical Engineering (ASME 2005), Boiler and Pressure Vessel Code (Code), Code Case N-629, Use of Fracture Toughness Test Data to establish Reference Temperature for Pressure Retaining materials of Section III.

    Google Scholar 

  • ASTM E1921-08ae1, 2007 Standard Test Method for Determination of Reference Temperature, To, for Ferritic Steels in the Transition Range ICS Number Code 77.040.106.

    Google Scholar 

  • Bjerager P., 1989, Methods for structural reliability computations, in Computational Mechanics of Probabilistic and Reliability Analysis, W. K. Liu and T. B. Belytschko (Eds), Elme-press International, Lausanne, Switzerland.

    Google Scholar 

  • Buffon G.L., 1744, Expériences sur la force du bois, Second Mémoire, in Mémoires de mathématique et de Physique, tirés des registres de l'Académie Royale des Sciences, Imprimerie Royale, Paris, pp. 292–334.

    Google Scholar 

  • Burdekin F.M. and Dawes M.G., 1971, Practical use of linear elastic and yielding fracture mechanics with particular reference to pressure vessels, Institution of Mechanical Engineers, pp. 28–37. In: Practical application of fracture mechanics to pressure-vessel technology: a conference held at the Institution of Electrical Engineers, Savoy Place, London, 3–5 May 1971.

    Google Scholar 

  • Denys R., 2007, Interaction between material properties, inspection accuracy and defect acceptance levels in strain based pipeline design, in Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines, G. Pluvinage and M. Elwany (Eds), Springer, Dordrecht, pp. 1–22.

    Google Scholar 

  • Eurocode 3, 2005, Design of steel structures. General rules and rules for buildings Division 1, Class 1.

    Google Scholar 

  • http://www.tms.org/pubs/journals/JOM/9801.html: Felkins, K., Leighly, H.P., Jr. and Jankovic, A., 1988, The Royal Mail Ship Titanic: Did a Metallurgical Failure Cause a Night to Remember? JOM, 50(1), pp. 12–18.

  • Jallouf S., Pluvinage G., Carmasol A., Milović L. and Sedmak S., 2005, Determination of safety margin and reliability factor of boiler tube with surface crack, Structural Integrity and Life, vol 5, no 3, pp. 131–142.

    Google Scholar 

  • Krasowsky A. and Pluvinage G., 1993, Structural parameters governing fracture toughness of Engineering Materials. Physico Chemical Mechanics of Materials, vol 29, Mai—Juin, no 3, pp. 106–113.

    Google Scholar 

  • Kumar V., German M.D. and Shih C.F., 1981, An Engineering approach of elastic plastic fracture mechanics, EPRI, NP1931, Res.Pr 1237-1.

    Google Scholar 

  • Moulin D., Drubray B. and Nedelec M. 1998, Méthode pratique de calcul de J, Annexe du RCC-MR:Méthode Js.

    Google Scholar 

  • Pluvinage G., 2003, Un siècle d'essai Charpy, de la résistance vive à la rupture à la mécanique de rupture d'entaille, Revue Mécanique et Industries, vol 4, no 3, pp. 197–212.

    Article  Google Scholar 

  • Pluvinage G., 2007, General approaches of pipeline defect assessment, Safety, Reliability and Risks Associated with Water, Oil and Gas Pipelines, G. Pluvinage and M. Elwany (Eds), Springer, Dordrecht, pp. 1–22.

    Google Scholar 

  • Pluvinage G. and Sapounov V., 2007, Conception fiabiliste de la sécurité des matériaux composites, Revue des Sciences et de la technologie, Juin, no 16, pp. 6–15. R6, 1998, Assessment of the integrity of structures containing defects, Nuclear electric procedure R/H/R6, Revision 3.

    Google Scholar 

  • Sanz G., 1980, Essai de mise au point d'une méthode quantitative de choix de qualités d'acier vis à vis du risque de rupture fragile, Revue de Métallurgie, CIT Juillet, pp. 621–642.

    Google Scholar 

  • Save M.A., Massonnet, C.E. and de Saxce, G., 1997, Plastic Limit Analysis of Plates, Shells and Disks North-Holland, Amsterdam, 6019972 pp. ISBN 0-444-89479-9.

    MATH  Google Scholar 

  • Schwalbe K.H. and Cornec A., 1991, The engineering treatment model (ETM) and its practical application, Fatigue and Fracture of Engineering Materials and Structures, vol 14, pp. 405–412.

    Article  Google Scholar 

  • SINTAP: Structural Integrity Assessment Procedure, Final Report E-U project BE95–1462 Brite Euram Programme Brussels (1999).

    Google Scholar 

  • Turner C.E., 1979, Methods for post yield fracture safety assessment, in Post-Yield Fracture Mechanics, Applied Science Publishers, London, pp. 23–210.

    Google Scholar 

  • Wallim K., 1990, Methodology for selecting Charpy Toughness. Criteria for thin high strength steels, Jernkontorets Forskning, VTT manufacturing Technology Finland, Part I, II, III, Nr 4013/89, TO 40–05–06–31.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Pluvinage, G. (2009). Safe and Reliable Design Methods for Metallic Components and Structures Design Methods. In: Pluvinage, G., Sedmak, A. (eds) Security and Reliability of Damaged Structures and Defective Materials. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2792-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2792-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2791-7

  • Online ISBN: 978-90-481-2792-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics