Skip to main content

In Situ Methods of Testing Stone Monuments and the Application of Nondestructive Physical Properties Testing in Masonry Diagnosis

  • Chapter
Materials, Technologies and Practice in Historic Heritage Structures

Abstract

Rapid in situ diagnosis of monuments is a key issue in the preservation of heritage sites. Stone masonry diagnosis is aimed to analyse the condition of a stone structure or building in order to understand the causes of deterioration and to find an adequate treatment and optimal conservation method or management plan for a heritage site or building. These measurements can provide valuable data for maintenance, restoration or they could form the base line of “preventive conservation”. Due to the rapid development of measuring systems and the application of new methods and techniques from other fields (e.g., from the medical sciences) to masonry diagnosis, a wide range of techniques are available these days. The new methods such as portable spectroscopy units (Brunetti 2008 ), portable XRF (Thornbush and Viles 2006 ), combined XRD/XRF (Chiari 2008 ), X-ray tomography (Cnudde et al. 2009 ) or Light Detection And Ranging scanners ( LiDAR, Meneely et al. 2008 ) and many other methods can revolutionize monument diagnosis in the future. Nevertheless, the widespread application of some of these new techniques is now hampered by their high costs and therefore in daily practice simpler and cheaper tools and methods are applied in masonry diagnosis. This chapter will describe both these new, expensive techniques and the older and generally cheaper equipments and methods of stone masonry diagnosis, focusing on testing physical parameters in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Engineering Geology 81:1–14

    Article  Google Scholar 

  • Beck K, Al-Mukhatar M, Rozenbaum O, Rautureau N (2003) Characterization, water transfer properties and deterioration in tuffeau: building material in the Loire valley-France. Building and Environment 38:1151–1162

    Article  Google Scholar 

  • Bellopede P, Manfredotti L (2006) Ultrasonic sound test on stone: comparison of indirect and direct methods under various test conditions. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering and conservation, vol 2. Taylor & Francis/Balkema, London, pp 539–546

    Google Scholar 

  • Bencharin S, Fassina V, Molin G (2008) In situ evaluation of restoration treatment on the Loggia Cornaro in Padova, Italy. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol II. Nicolaus Copernicus University Press, Torun, pp 1163–1170

    Google Scholar 

  • Billmeyer Jr FW, Saltzman M (1981) Principles of color technology. Wiley, New York

    Google Scholar 

  • Boochs F, Huxhagen U, Kraus K (2008) Potential of high-precision measuring techniques for the monitoring of surfaces from heritage objects. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 87–96

    Google Scholar 

  • Brimblecombe P, Grossi CM (2004) The rate of darkening material surfaces. In: Saiz-Jimenez C (ed) Air pollution and cultural heritage. Taylor & Francis Group, London, pp 193–198

    Google Scholar 

  • Brunetti BG (2008) Portable equipment for non-invasive in-situ measurements: present and perspectives. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 217–226

    Google Scholar 

  • Cassar J (2002) Deterioration of the globigerina limestone of the Maltese Islands. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society, London, pp 33–49 (Special Publications)

    Google Scholar 

  • Chiari G (2008) Saving art in situ. Nature 453:159

    Article  Google Scholar 

  • Cnudde V, Dubruel P, De Winne K, De Witte E, Masschaele B, Jacobs P, Schacht E (2009) The use of X-ray tomography in the study of water repellents and consolidants. Engineering Geology 103:84–92

    Article  Google Scholar 

  • Delgado Rodrigues J (2008) Surface and bulk characterisation of stones in architectural heritage. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 143–155

    Google Scholar 

  • Dionísio A (2007) Stone decay induced by fire on historic buildings: the case of the cloister of Lisbon Cathedral (Portugal). In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, vol 271. Geological Society, London, pp 87–98 (Special Publications)

    Google Scholar 

  • Doehne E, Pinchin S (2008) Time-Lapse Macro-Imaging in the field: monitoring rapid flaking of magnesian limestone. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol I. Nicolaus Copernicus University Press, Torun, pp 365–372

    Google Scholar 

  • Exadaktylos G, Tiano P, Filareto C (2000) Validation of a model of rotary drilling of rocks with the drilling force measurements. International Journal for Restoration of Buildings and Monuments 6(3):307–340

    Google Scholar 

  • Fitzner B, Heinrichs K,La Bouchardiere D (2004) The Bangudae Petroglyph in Ulsan, Korea: studies on weathering and risk prognosis. Environmental Geology 46:504–526

    Article  Google Scholar 

  • Fratini F, Resic S, Tiano P (2006) A new portable system for determining the state of conservation of monumental stones. Materials and Structures 39:139–147

    Article  Google Scholar 

  • Gomez-Heras M, Alvarez de Buergo M, Fort R, Hajpál M, Török Á, Varas MJ (2006) Evolution of porosity in Hungarian building stones after simulated burning. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering and conservation, vol 1. Taylor & Francis/Balkema, London, pp 513–519

    Google Scholar 

  • Grossi CM, Esbert RM, Díaz-Pache F, Alonso FJ (2003) Soiling of building stones in urban environment. Building and Environment 38:147–159

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Colour changes in architectural limestones from pollution and cleaning. Colour Research and Application 32(4):320–331

    Article  Google Scholar 

  • Hajpál M, Török Á (2004) Physical and mineralogical changes in sandstones due to fire and heat. Environmental Geology 46:306–312

    Article  Google Scholar 

  • Irfan TY, Dearman WR (1978) Engineering classification and index properties of a weathered granite. Bulletin of the International Association of Engineering Geology 17:79–90

    Article  Google Scholar 

  • ISRM (1981) Suggested methods for the quantitative description of discontinuities in rock masses. In: Brown ET (ed) Rock characterization, testing and monitoring. ISRM suggested methods. Pergamon Press, Oxford, pp 3–52

    Google Scholar 

  • McKinley JM, Warke PA, Lloyd CD, Ruffell AH, Smith BJ (2006) Geostatistical analysis in weathering studies: case study of Santon Moor building sandstone. Earth Surface Processes and Landforms 31:950–969

    Article  Google Scholar 

  • Meinhardt-Degen J, Franzen C, Löther T, Weise S (2008) Application of active infrared thermography for the detection of sub-surface detects in historic wall paintings and the assessment of their backfilling. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol 1. Nicolaus Copernicus University Press, Torun, pp 435–440

    Google Scholar 

  • Meneely JD, Smith BJ, Viles HA, Gomez-Heraz M (2008) In situ monitoring of limestone buildings in Oxford. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir- Editzioni Firenze, Florence, pp 327–331

    Google Scholar 

  • Myrin M, Malaga K (2008) Evaluation of consolidation treatments of sandstone by use of ultrasound pulse velocity. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol 1. Nicolaus Copernicus University Press, Torun, pp 441–448

    Google Scholar 

  • Olmi R, Riminesi C, Priori S, Proietti N, Capitani D, Segre AL, Giani E, Santopadre P (2008) An integrated approach to mapping moisture and slat content in two frescoes in the Basilica of San Clemente. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir- Editzioni Firenze, Florence, pp 239–246

    Google Scholar 

  • Pamplona M, Kocher M, Snethlage R, Aires Barros L (2007) Drilling resistance: overview and outlook. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158(3):665–676

    Article  Google Scholar 

  • Pamplona M, Melo MJ, Tiano P (2008) Contact-sponge method for in situ evaluation of water repellent and consolidation treatment. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 247–254

    Google Scholar 

  • Přikryl R (2006) “New natural stone” for the reconstruction of Charles Bridge in Prague. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering and conservation, vol 1. Taylor & Francis/Balkema, London, pp 23–29

    Google Scholar 

  • Přikryl R (2007) Understanding the Earth scientist's role in the pre-restoration research of monuments: an overview. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, vol 271. Geological Society, London, pp 9–21 (Special Publications)

    Google Scholar 

  • Rius V (2008) How to use static and dynamic contact angles to characterize surface properties with a small portable device. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 255–260

    Google Scholar 

  • Rozenbaum O, Le Trong E, Rouet J-L, Bruand A (2007) 2-D image analysis: A complementary tool for characterization quarry and weathered building liomestones. Journal of Cultural Heritage 8:151–159

    Article  Google Scholar 

  • Sabatakakis N, Koukis K, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology 97:80–90

    Article  Google Scholar 

  • Schneider C, Ziesch J, Bauer J, Török Á, Siegesmund S (2008) Bauwerkskartierung zur Analyse des Verwitterungszustands an den Außenmauern des Schlosses von Buda (Budapest, Ungarn), Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 59:219–235

    Google Scholar 

  • Skłodowski M (2008) Application of ultrasonic edge probes to on-site testing of mechanical properties of historical construction materials. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 185–194

    Google Scholar 

  • Smith BJ (1996) Scale problems in the interpretation of urban stone decay. In: Smith BJ, Warke PA (eds) Process of Urban Stone Decay. Donhead, London, pp 3–18

    Google Scholar 

  • Smith BJ, Török Á, McAlister JJ, Megarry J (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of the oolitic limestones from Budapest, Hungary. Building and Environment 38:1173–1183

    Article  Google Scholar 

  • Smith BJ, Gomez-Heras M, Meneeley J, McCabe S, Viles HA (2008) High resolution monitoring of surface morphological change of building limestones in response to simulated salt weathering. In: Lukaszewicz J, Niemcewicz P (eds) Proceedings of the 11th international congress on deterioration and conservation of stone, vol 1. Nicolaus Copernicus University Press, Torun, pp 275–282

    Google Scholar 

  • Thornbush MJ, Viles HA (2006) Use of portable X-ray fluorescence for monitoring elemental concentrations in surface units on roadside stone at Worcester College, Oxford. In: Fort R, Alvarez de Buergo M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering and conservation, vol 2, Taylor & Francis/Balkema, London, pp 613–619

    Google Scholar 

  • Thornbush, MJ, Viles HA (2007) Photo-based decay mapping of replaced stone blocks on the boundary wall of Worcester College, Oxford. In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, vol 271. Geological Society, London, pp 69–75 (Special Publications)

    Google Scholar 

  • Tiano P, Pardini C (eds) (2008) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 1–459

    Google Scholar 

  • Tiano P, Filareto C, Ponticelli S, Ferrari M, Valentini E (2000a) Drilling force measurement system, a new standardisable methodology to determine the stone cohesion: prototype design and validation. International Journal for Restoration of Buildings and Monuments 6(2):133–150

    Google Scholar 

  • Tiano P, Delgado Rodrigues J, De Witte E, Verges-Belmin V, Massey S, Snethlage R, Costa D, Cadot-Leroux L, Garrod E, Singer B (2000b) The conservation of monuments: a new method to evaluate consolidating treatments. International Journal for Restoration of Buildings and Monuments 6(2):115–132

    Google Scholar 

  • Tiano P, Tapete D, Matteini M, Ceccaroni F (2008) The microphotogrametry: a new diagnostic tool for on site monitoring of monumental surfaces. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 97–106

    Google Scholar 

  • Török Á (2002) Oolitic limestone in polluted atmospheric environment in Budapest: weathering phenomena and alterations in physical properties. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies, vol 208. Geological Society, London, pp 363–379 (Special Publications)

    Google Scholar 

  • Török Á (2003) Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. Building and Environment 38(9–10):1185–1192

    Article  Google Scholar 

  • Török Á (2008) Schmidt hammer and Duroscope tests in assessing surface properties of stones. In: Tiano P, Pardini C (eds) In situ monitoring of monumental surfaces. Edifir-Editzioni Firenze, Florence, pp 207–214

    Google Scholar 

  • Török Á, Müller C, Hüpers A, Hoppert M, Siegesmund S, Weiss T (2007a) Differences in texture, physical properties and microbiology of weathering crust and host rock: a case study of the porous limestone of Budapest (Hungary). In: Přikryl R, Smith BJ (eds) Building stone decay: from diagnosis to conservation, vol 271. Geological Society, London, pp 261–276 (Special Publications)

    Google Scholar 

  • Török Á, Stück H, Quetscher A, Glätzner P, Siegesmund S (2007b) Comparative study of weathering features of stones in Hungarian castles: morphological characteristics and changes in physical properties. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158(4):931–955

    Article  Google Scholar 

  • van Hees DRPJ, Van Der Klugt LJAR, De Witte E, De Clerq H, Binda L, Baronio G (1995) Test method for the evaluation of the in situ performance of water-repellent treatments. In: Siemes AJM (ed) Proceedings of the 1st international symposium surface treatment of building materials with repellent agents, vol 14. Delft University of Technology, Delft, pp 1–16

    Google Scholar 

  • Viles HA (1994) Observations and explanations of stone decay in Oxford, UK. In: Thiel MJ (ed) Conservation of stone and other materials, vol I, Causes of disorders and diagnosis, E & FN Spon—RILEM, London, pp 115–120

    Google Scholar 

  • Weiss T, Rasoloffosaon PNJ, Siegesmund S (2002) Ultrasonic wave velocities as diagnostic toll for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies and case studies, vol 205. Geological Society, London, pp 149–164 (Special Publications)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Török, Á. (2010). In Situ Methods of Testing Stone Monuments and the Application of Nondestructive Physical Properties Testing in Masonry Diagnosis. In: Dan, M.B., Přikryl, R., Török, Á. (eds) Materials, Technologies and Practice in Historic Heritage Structures. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2684-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2684-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2683-5

  • Online ISBN: 978-90-481-2684-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics