Skip to main content

Omics Approaches in Cancer Research

  • Chapter
  • First Online:
An Omics Perspective on Cancer Research

Abstract

Cancer is a complex genetic, proteomic, and cellular disease caused by multiple factors via genetic mutations (hereditary or somatic) or environmental factors. The emerging omics technologies are being increasingly used for cancer research and personalized drug discovery, including genomics, epigenomics, proteomics, cytomics, metabolomics, interactomics, and bioinformatics. Recent advances in high-throughput omics technologies have provided new opportunity in the molecular analysis of human cancer in an unprecedented speed and details.

The detection and treatment of cancer is greatly facilitated by the omics technologies. For example, genomics analysis provides clue for gene regulation and gene knockdown for cancer management. The approval of Mammaprint and Oncotype DX indicates that multiplex diagnostic marker sets are becoming feasible. Discovery of the involvement of microRNAs in human cancers has opened a new page for cancer researchers. Some therapeutic drugs targeting on DNA methylation and histone deacetylation are currently undergoing keen studies. Proteomics also plays an important role in cancer biomarker discovery and quantitative proteome-disease relationships provide a mean for connectivity analysis. Fluorescent dye enables a more reliable analysis and it facilitates the progress of biochip and cytomics. The huge amount of information collected by multiparameter single cell flow- or slide-based cytometry measurements serves to investigate the molecular behavior of cancer cell populations. Cancer is also an ideal field of application for metabolite profiling owing to its unique biochemical properties.

It is envisioned that omics technologies will enhance our understanding of molecular signatures of cancer on both qualitative and quantitative patterns. The novel omics technologies have brought powerful abilities to screen cancer cells at the gene, transcript, protein, metabolite, and their interaction network level in searching of novel drug targets, expounding the drug mechanism-of-action, identifying adverse effects in unexpected interaction, validating current drug targets, speeding up the discovery of new targets, exploring potential applications for novel drugs, and enabling the translation from bench to bedside. The field is moving fast, specialized techniques are being developed to integrate omics information and to enable new research avenues that can take advantage of and apply this information to new therapies. In this chapter, different omics technologies are briefly introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cesareni G, Ceol A, Gavrila C et al (2005) Comparative interactomics. FEBS Lett 579:1828–1833

    Article  CAS  PubMed  Google Scholar 

  • Cho WC (2007a) Cancer biomarker discovery: the contribution of “omics”. BIOforum Eur 11:35–37

    Google Scholar 

  • Cho WC (2007b) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer 6:60

    Article  PubMed  Google Scholar 

  • Cho WC (2007c) Contribution of oncoproteomics to cancer biomarker discovery. Mol Cancer 6:25

    Article  PubMed  Google Scholar 

  • Cho WC (2007d) Proteomic approaches to cancer target identification. Drug Discov Today Ther Strateg 4:245–250

    Article  Google Scholar 

  • Cho WC (2009) Role of miRNAs in lung cancer. Expert Rev Mol Diagn 9:773–776

    Article  CAS  PubMed  Google Scholar 

  • Cho WC (2010a) Cancer biomarkers (an overview). In: Hayat EM (ed) Methods of cancer diagnosis, therapy and prognosis. Springer, Netherlands

    Google Scholar 

  • Cho WC (2010b) MicroRNAs as potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol in press

    Google Scholar 

  • Cho WC (2010c) MicroRNAs in cancer - from research to therapy. BBA - Rev Cancer in press

    Google Scholar 

  • Cho WC, Cheng CH (2007) Oncoproteomics: current trends and future perspectives. Expert Rev Proteomics 4:401–410

    Article  CAS  PubMed  Google Scholar 

  • Cho WC, Chow AS, Au JS (2009) Restoration of tumour suppressor hsa-miR-145 inhibits cancer cell growth in lung adenocarcinoma patients with epidermal growth factor receptor mutation. Eur J Cancer 45:2197–2206

    Article  CAS  PubMed  Google Scholar 

  • Claudino WM, Quattrone A, Biganzoli L et al (2007) Metabolomics: available results, current research projects in breast cancer, and future applications. J Clin Oncol 25:2840–2846

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  • Finn WG (2007) Diagnostic pathology and laboratory medicine in the age of “omics”: a paper from the 2006 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 9:431–436

    Article  CAS  PubMed  Google Scholar 

  • Furge KA, Tan MH, Dykema K et al (2007) Identification of deregulated oncogenic pathways in renal cell carcinoma: an integrated oncogenomic approach based on gene expression profiling. Oncogene 26:1346–1350

    Article  CAS  PubMed  Google Scholar 

  • Futschik ME, Chaurasia G, Herzel H (2007) Comparison of human protein–protein interaction maps. Bioinformatics 23:605–611

    Article  CAS  PubMed  Google Scholar 

  • González-Díaz H, González-Díaz Y, Santana L et al (2008) Proteomics, networks and connectivity indices. Proteomics 8:750–778

    Article  PubMed  Google Scholar 

  • Gowda GA, Zhang S, Gu H et al (2008) Metabolomics-based methods for early disease diagnostics. Expert Rev Mol Diagn 8:617–633

    Article  CAS  PubMed  Google Scholar 

  • Hamacher M, Herberg F, Ueffing M et al (2008) Seven successful years of Omics research: the Human Brain Proteome Project within the National German Research Network (NGFN). Proteomics 8:1116–1117

    Article  CAS  PubMed  Google Scholar 

  • Hatada I (2006) Emerging technologies for genome-wide DNA methylation profiling in cancer. Crit Rev Oncol 12:205–223

    Google Scholar 

  • He YD (2006) Genomic approach to biomarker identification and its recent applications. Cancer Biomark 2:103–133

    CAS  PubMed  Google Scholar 

  • Heck AJ (2008) Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5:927–933

    Article  CAS  PubMed  Google Scholar 

  • Hsu CN, Lai JM, Liu CH et al (2007) Detection of the inferred interaction network in hepatocellular carcinoma from EHCO (Encyclopedia of Hepatocellular Carcinoma Genes Online). BMC Bioinform 8:66

    Article  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol 48:653–683

    Article  CAS  PubMed  Google Scholar 

  • Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG (2007) Epigenomics in respiratory epithelium carcinogenesis: prevention and therapeutic challenges. Cancer Treat Rev 33:284–288

    Article  CAS  PubMed  Google Scholar 

  • Keusch GT (2006) What do -omics mean for the science and policy of the nutritional sciences? Am J Clin Nutr 83:S520–522

    Google Scholar 

  • Lussier YA, Liu Y (2007) Computational approaches to phenotyping: high-throughput phenomics. Proc Am Thorac Soc 4:18–25

    Article  PubMed  Google Scholar 

  • Mei H, Cuccaro ML, Martin ER (2007) Multifactor dimensionality reduction-phenomics: a novel method to capture genetic heterogeneity with use of phenotypic variables. Am J Hum Genet 81:1251–1261

    Article  CAS  PubMed  Google Scholar 

  • Negrini M, Ferracin M, Sabbioni S et al (2007) MicroRNAs in human cancer: from research to therapy. J Cell Sci 120:1833–1840

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK (2006) Reviewers peering from under a pile of omics data. Nature 440:992

    Article  CAS  PubMed  Google Scholar 

  • Reymond MA, Lippert H (2008) Proteomics in lung cancer. In: Daoud SS (ed) Cancer proteomics: from bench to bedside. Human Press, Totowa, NJ, pp 139–159

    Google Scholar 

  • Rosenblatt KP, Bryant-Greenwood P, Killian JK et al (2004) Serum proteomics in cancer diagnosis and management. Annu Rev Med 55:97–112

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Carbayo M (2006) Antibody arrays: technical considerations and clinical applications in cancer. Clin Chem 52:1651–1659

    Article  CAS  PubMed  Google Scholar 

  • Shih IeM, Wang TL (2005) Apply innovative technologies to explore cancer genome. Curr Opin Oncol 17:33–38

    Article  CAS  PubMed  Google Scholar 

  • Stransky B, Barrera J, Ohno-Machado L et al (2007) Modeling cancer: integration of “omics” information in dynamic systems. J Bioinform Comput Biol 5:977–986

    Article  CAS  PubMed  Google Scholar 

  • Tárnok A, Bocsi J, Brockhoff G (2006) Cytomics – importance of multimodal analysis of cell function and proliferation in oncology. Cell Prolif 39:495–505

    Article  PubMed  Google Scholar 

  • van der Merwe DE, Oikonomopoulou K, Marshall J et al (2007) Mass spectrometry: uncovering the cancer proteome for diagnostics. Adv Cancer Res 96:23–50

    PubMed  Google Scholar 

  • van Ravenzwaay B, Cunha GC, Leibold E et al (2007) The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett 172:21–28

    Article  PubMed  Google Scholar 

  • Wishart DS (2007) Proteomics and the human metabolome project. Expert Rev Proteomics 4:333–335

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo A et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–672

    Article  CAS  PubMed  Google Scholar 

  • Zbuk KM, Eng C (2007) Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer 7:35–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li L, Wei D et al (2007) Moving cancer diagnostics from bench to bedside. Trends Biotechnol 25:166–173

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. S. Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cho, W.C.S. (2010). Omics Approaches in Cancer Research. In: Cho, W. (eds) An Omics Perspective on Cancer Research. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2675-0_1

Download citation

Publish with us

Policies and ethics