Skip to main content

Cropping Systems, Carbon Sequestration and Erosion in Brazil: A Review

  • Chapter
  • First Online:
Sustainable Agriculture

Abstract

Soils represent a large carbon pool, approximately 1,500 Gt, which is equivalent to almost three times the quantity stored in terrestrial biomass and twice the amount stored in the atmosphere. Any modification of land-use or land management can induce variations in soil carbon stocks, even in agricultural systems that are perceived to be in a steady state. Tillage practices often induce soil aerobic conditions that are favourable to microbial activity and may lead to a degradation of soil structure. As a result, mineralization of soil organic matter increases in the long-term. The adoption of no-tillage systems and the maintenance of a permanent vegetation cover (Direct seeding Mulched based Cropping system [DMC]), may increase carbon levels in the top-soil.

In Brazil, no-tillage practices (mainly DMC), were introduced approximately 30 years ago in the south in Paraná state, primarily as a means of reducing erosion. Subsequently research has began to consider the management of the crop waste products and effects on soil fertility, either in terms of phosphorus management, as a means of controlling soil acidity, or determining how manures can be applied in a more localised manner. The spread of no-till in Brazil has involved a large amount of extension work. The area under no-tillage is still increasing in the centre and north of the country and currently occupies ca 20 million hectares and covering a diversity of environmental conditions, cropping systems and management practices.

Most studies of Brazilian soils give rates of carbon storage in the top 40 cm of the soil of 0. 4 – 1. 7 t C ha − 1 per year, with the highest rates in the Cerrado region. However, caution must be taken when analysing DMC systems in term of carbon sequestration. Comparisons should include changes in trace gas fluxes and should not be limited to a consideration of carbon storage in the soil alone if the full implications for Global Warming are to be assessed.

Résumé

Les sols constituent le plus gros réservoir superficiel de carbone, environ 1,500 Gt C, ce qui équivaut à presque trois fois la quantité stockée dans la biomasse terrestre, et deux fois celle de l’atmosphère. Toute modification de l’usage des terres et, même pour les systèmes agricoles à l’équilibre, toute modification de l’itinéraire technique, peut induire des variations du stockage du carbone dans les sols. Les pratiques de labour favorisent souvent une aération du sol, qui est propice à l’activité microbienne et peuvent conduire à une dégradation de la structure. Il en résulte sur le moyen et long terme une minéralisation accrue de la matière organique du sol. Du fait de l’absence (ou limitation) des travaux du sol (No-tillage) et d’un maintien d’une couverture végétale permanente (DMC), les systèmes de semis direct favoriseraient la séquestration du carbone et limiteraient l’érosion. Au Brésil, l’apparition du semi-direct dans la Région Sud, au Paraná date du début des années 70. Un des objectifs majeurs de l’époque était la lutte contre l’érosion, puis les recherches se sont développées vers la gestion des résidus de récolte et leur effet sur la fertilité, que ce soit pour la gestion du phosphore, le contrôle de l’acidité ou la localisation des engrais. Cette pratique, qui a pris une grande extension et continue de s’accroître dans le centre et le nord du pays, occupe actuellement entre environ 20 millions d’hectares avec une très grande diversité de milieux, d’agrosystèmes et d’itinéraires techniques. Au Brésil, la plupart des auteurs donnent des vitesses de stockage du carbone dans des sols sous semis-direct allant de 0.4 à 1, 7 t C ha − 1 par an pour la couche 0–40 cm, avec les taux les plus élevés pour la région centrale du Cerrado. Mais certaines précautions sont nécessaires lors de la comparaison, en terme de séquestration du carbone, des systèmes de semis direct avec les systèmes labourés. Les comparaisons ne doivent pas se limiter au seul stockage de carbone dans le sol, mais doivent prendre compte les changements dans les émissions de méthane et d’oxyde nitreux qui sont des puissants gaz à effet de serres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amado T.J., Fernandez S.B., Mielniczuk J. (1998) Nitrogen availability as affected by ten years cover crop and tillage systems in southern Brazil, Brazilian Journal of Soil and Water Conservation 5, 268–271.

    Google Scholar 

  • Amado T.J., Bayer C., Eltz F.L.F., Brum A.C.R. (2001) Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental, Revista Brasileira de Ciência do Solo 25, 189–197.

    CAS  Google Scholar 

  • Amado T.J., Pontelli C.B., Júnior G.G., Brum A.C.R., Eltz F.L.F., Pedruzzi C. (1999) Seqüestro de carbono em sistemas conservacionistas na Depressão Central do Rio Grande do Sul. in: Veiga M. (Ed.), Reunião bienal da rede latino-americana de agricultura conservacionista, Universidade Federal de Santa Catarina, Florianópolis, Brazil, pp. 42–43.

    Google Scholar 

  • Bajracharya R.M., Lal R., Kimble J.M. (1998) Soil organic carbon distribution in aggregates and primary particle fractions as influenced by erosion phases and landscape position, in: Lal R., Kimble J.M., Follett R.F., Stewart B.A. (Eds.), Soil Processes and the Carbon Cycle., Advances in Soil Science, CRC, Boca Raton, FL, pp. 353–367.

    Google Scholar 

  • Bayer C., Bertol I. (1999) Caracteristicas quimicas de um cambissolo humico afetadas por sistemas de preparo, com ênfase a matéria orgânica, Revista Brasileira de Ciência do Solo 23, 687–694.

    CAS  Google Scholar 

  • Bayer C., Martin-Neto L., Mielniczuk J., Ceretta C.A. (2000a) Effect of no-till cropping systems on soil organic matter in a sandy clay loam Acrisol from southern Brazil monitored by electron spin resonance and nuclear magnetic resonance, Soil and Tillage Research 53, 95–104.

    Article  Google Scholar 

  • Bayer C., Mielniczuk J., Amado T.J.C., Martin-Neto L., Fernandes S.V. (2000b) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil, Soil and Tillage Research 54, 101–109.

    Article  Google Scholar 

  • Bayer C., Mielniczuk J., Martin-Neto L., Ernani P.R. (2002) Stocks and humification degree of organic matter fractions as affected by no-tillage on a subtropical soil, Plant and Soil 238, 133–140.

    Article  CAS  Google Scholar 

  • Bernoux M., Feller C., Cerri C.C., Eschenbrenner V., Cerri C.E.P. (2006) Soil carbon sequestration, p. 13–22, in: Roose E., Lal R., Feller C., Barthès B., Stewart B. (Eds.), Erosion and Carbon Dynamics. Advances in Soil Science, Vol 15, CRC, Boca Raton, USA. 352 pp. ISBN : 1566706882.

    Google Scholar 

  • Borges Filho E.P. (2001) O desenvolvimento do plantio direito no Brasil: a conjunção de interesses entre agricultores, indústrias e estado, Master thesis, UNICAMP/IE, Campinas, Brazil, 141 p.

    Google Scholar 

  • Cambardella C.A., Elliott E.T. (1992) Particulate soil organic matter changes across a grassland cultivation sequence, Soil Science Society of America Journal 56, 777–783.

    Article  Google Scholar 

  • Castro Filho C., Lourenço A., Guimarães M., de F., Fonseca I.C.B. (2002) Aggregate stability under different soil management systems in a red latosol of Paraná, Brazil, Soil and Tillage Research 65, 45–51.

    Google Scholar 

  • Castro Filho C., Muzilli O., Podanoschi A.L. (1998) Estabilidade dos agregados e sua relação com o teor de carbono orgânico num Latossolo Roxo distrófico, em função de sistemas de plantio, rotação de culturas e métodos de preparo das amostras, Revista Brasileira de Ciência do Solo 22, 527–538.

    Google Scholar 

  • Corazza E.J., Silva J.E., Resck D.V.S., Gomes A.C. (1999) Comportamento de diferentes sistemas de manejo como fonte e depósito de carbono em relação a vegetação de Cerrado, Revista Brasileira de Ciência do Solo 23, 425–432.

    CAS  Google Scholar 

  • De Maria, I.C., Plantio Direto. 2004. ww.iac.sp.gov.br/Arquivos/ Noticias/Anteriores/Materias/PlantioDireto.htm

    Google Scholar 

  • De Maria I.C., Nnabude P.C., Castro O.M. (1999) Long-term tillage and crop rotation effects on soil chemical properties of a Rhodic Ferralsol in southern Brazil, Soil and Tillage Research 51, 71–79.

    Article  Google Scholar 

  • Derpsch R. (2001) Conservation tillage, no-tillage and related technologies, in: García-Torres L., Benites J., Martínez-Vilela A. (Eds.), Conservation Agriculture, a Worldwide Challenge, Proceedings of the First World Congress on Conservation Agriculture, Madrid, Volume 1: Keynote Contributions, 1–5 October 2001, pp. 161–170, http://www. rolf-derpsch.com

    Google Scholar 

  • Dick W.A., Durkalski J.T. (1997) No-tillage production agriculture and carbon sequestration in a Typic Fragiudalf soil of Northeastern Ohio, in: Lal R., Kimble J., Follett R.F., Stewart B.A. (Eds.), Management of Carbon Sequestration in Soil, Advances in Soil Science, CRC Lewis, Boca Raton, FL, pp. 59–71.

    Google Scholar 

  • Febrapdp, Federação Brasileira de Plantio Direto na Palha (2004) http://www.febrapdp.org.br

    Google Scholar 

  • Flessa H., Ruser R., Dörsch P., Kamp T., Jimenez M.A., Munch J.C., Beese F. (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany, Agriculture, Ecosystems and Environment 91, 175–189.

    Article  CAS  Google Scholar 

  • Freixo A.A., Machado P.L.O.A., dos Sandos H.P., Silva C.A., Fadigas F.S. (2002) Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil, Soil and Tillage Research 64, 221–230.

    Article  Google Scholar 

  • Giller K.E., Cadisch G., Palm C. (2002) The North-South divide. Organic wastes, or resources for nutrient management? Agronomie, 22, 703–709.

    Google Scholar 

  • Houghton R.A. (2003) Why are estimates of the terrestrial carbon balance so different? Global Change Biology 9, 500–509.

    Article  Google Scholar 

  • Karlen D.L., Cambardella C.A. (1996) Conservation strategies for improving soil quality and organic matter storage, in: Carter M.R., Stewart B.A. (Eds.), Structure and Organic Matter Storage in Agricultural Soils, Advances in Soil Science, CRC, Boca Raton, FL, pp. 395–420.

    Google Scholar 

  • Kladivko E. (2001) Tillage systems and soil ecology, Soil and Tillage Research 61, 61–76.

    Article  Google Scholar 

  • Laflen J.M., Roose E.J. (1998) Methodologies for assessment of soil degradation due to water erosion., in: Lal R., Blum W.H., Valentin C., Stewart B.A. (Eds.), Methods for Assessment of Soil Degradation, Advances in Soil Science, CRC, Boca Raton, FL, pp. 31–55.

    Google Scholar 

  • Lal R. (1995) Global soil erosion by water and carbon dynamics, in: Lal R., Kimble J., Levine E., Stewart B.A. (Eds.), Soils and Global Change, Advances in Soil Science. CRC Lewis, Boca Raton, FL, pp. 131–142.

    Google Scholar 

  • Lal R. (1997) Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment, Soil and Tillage Research, 43, 81–107.

    Article  Google Scholar 

  • Lal R. (1998) Soil processes and the greenhouse effect., in: Lal R., Blum W.H., Valentin C., Stewart B.A. (Eds.), Advances in Soil Science, CRC, Boca Raton, FL, pp. 199–212.

    Google Scholar 

  • Lal R. (2002) Soil carbon dynamic in cropland and rangeland, Environmental Pollution 116, 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Lal R., Kimble J., Follet R. (1997) Land use and soil C pools in terrestrial ecosystems, in: Lal R., Kimble J., Follett R.F., Stewart B.A., (Eds.). Management of Carbon Sequestration in Soil, Advances in Soil Science, CRC Lewis, Boca Raton, FL, pp. 1–10.

    Google Scholar 

  • Lal R., Kimble J., Follett R., Cole C.V. (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect, Ann Arbor Press, Ann Arbor, MI, 1998.

    Google Scholar 

  • Landers J.N. (2001) Zero tillage development in tropical Brazil: The story of a successful NGO activity, FAO Agricultural Services, Bulletin 147, Rome, available on line at www.fao.org/DOCREP/004/Y2638E/y2638e00.htm#toc

    Google Scholar 

  • Lima V.C., Lima J.M.C., Eduardo B.J.P., Cerri C.C. (1994) Conteúdo de carbono e biomassa microbiana em agrosistemas: comparação entre métodos de preparo do sols, Agrárias Curitiba 13, 297–302.

    Google Scholar 

  • Lindstrom M.J., Schumacher T.E., Cogo N.P., Blecha M.L. (1998) Tillage effects on water runoff and soil erosion after sod, Journal of Soil and Water Conservation 53, 59–63.

    Google Scholar 

  • Machado P.L.O.A., Silva C.A. (2001) Soil management under no-tillage systems in the tropics with special reference to Brazil, Nutrient Cycling in Agroecosystems 61, 119–130.

    Article  Google Scholar 

  • Metay A. (2004) Influence of no-tillage and cover plants on N2O production and emission from soils in the Cerrados (Brazil), International Conference on Greenhouse Gas Emissions from Agriculture, Mitigations Options and Strategies, Leipzig, Germany, February 2004, Congress Communications.

    Google Scholar 

  • Passianoto C.C., Ahrens T., Feigl B.J., Steudler P.A., Carmo J.B., Melillo J.M. (2003) Emissions of CO2, N2O and NO in conventional and no-till management practices in Rondônia. Brazil, Biology and Fertility of Soils 38, 200–208.

    Article  CAS  Google Scholar 

  • Paustian K., Six J., Elliott E.T., Hunt H.W. (2000) Management options for reducing CO2 emissions form agricultural soils, Biogeochemistry 48, 147–163.

    Article  CAS  Google Scholar 

  • Peixoto R.T., Stella L.M., Machulek Junior A., Mehl H.U., Batista E.A. (1999) Distibução das frações granulométricas da matéria orgânica em função do manejo do sols, in: Anais 3o Encontro brasileiro sobre substâncias húmicas, Santa Maria, Brazil, pp. 346–348.

    Google Scholar 

  • Perrin A.S. (2003) Effets de différents modes de gestion des terres agricoles sur la matière organique et la biomasse microbienne en zone tropicale humide au Brésil, Master dissertation, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 68 p.

    Google Scholar 

  • Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R., Blair R. (1995) Environmental and economic costs of soil erosion and conservation benefits, Science 267, 1117–1123.

    Article  PubMed  CAS  Google Scholar 

  • Pinto A.S., Bustamante M.M.C., Kisselle K., Burke R., Zepp R., Viana L.T., Varella R.F., Molina M. (2002) Soil emissions of N2O, NO and CO2 in Brazilian Savannas: effects of vegetation type, seasonality and prescribed fires. Journal of Geophysical Research 107 (D20) 8089, doi:10.1029/ 2001JD000342.

    Google Scholar 

  • Plataforma Plantio Direto (2003) http://www.embrapa.br/ plantiodireto, 11 February 2003.

    Google Scholar 

  • Reicosky D.C., Kemper W.D., Langdale G.W., Douglas C.L., Rasmunssen P.E. (1995) Soil organic matter changes resulting from tillage and biomass production, Journal of Soil and Water Conservation 50, 253–261.

    Google Scholar 

  • Resck D.V.S., Vasconcellos C.A., Vilela L., Macedo M.C.M. (2000) Impact of conversion of Brazilian Cerrados to cropland and pastureland on soil carbon pool and dynamics, in: Lal R., Kimble J.M., Stewart B.A. (Eds.), Global Climate Change and Tropical Ecosystems, Advances in Soil Science, CRC Press Boca Raton, FL, pp. 169–196.

    Google Scholar 

  • Riezebos H.T.H., Loerts A.C. (1998) Influence of land use change and tillage practice on soil organic matter in southern Brazil and eastern Paraguay, Soil and Tillage Research 49, 271–275.

    Article  Google Scholar 

  • Roscoe R., Buurman P. (2003) Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol, Soil and Tillage Research 70, 107–119.

    Article  Google Scholar 

  • Rosell R.A., Galantini J.A. (1997) Soil organic carbon dynamics in native and cultivated ecosystems of South America, in: Lal R., Kimble J., Follett R.F., Stewart B.A. (Eds.), Management of carbon sequestration in soil, Advances in soil science, CRC Lewis, Boca Raton, FL, pp. 11–33.

    Google Scholar 

  • Sá J.C.M. (2001) Dinâmica da matéria orgânica do solo em sistemas de manejo convencional e plantio direto no estado do Paraná, PhD thesis, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil.

    Google Scholar 

  • Sá J.C.M., Cerri C.C., Lal R., Dick W.A., Venzke Filho S.P., Piccolo M.C., Feigl B. (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol, Soil Science Society of America Journal 65, 1486–1499.

    Article  Google Scholar 

  • Schuman G.E., Janzen H.H., Herrick J.E. (2002) Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution 116, 391–396.

    Article  CAS  Google Scholar 

  • Scopel E., Doucene E., Primot S., Douzet J.M., Cardoso A., Feller C. (2003) Diversity of direct seeding mulch based cropping systems (DMC) in the Rio Verde region (Goias, Brazil) and consequences on soil carbon stocks, Book of Extended Summary of the II World Congress on Conservation Agriculture, Volume II, 11–15 August 2003. Foz do Iguaçu, Brazil, pp. 286–289.

    Google Scholar 

  • Siqueira Neto M. (2003) Estoques de carbono e nitrogênio do solo e emissões de gases do efeito estufa no sistema plantio direto em Tibagi (PR), Master dissertation, University of São Paulo, Piracicaba, Brazil.

    Google Scholar 

  • Sisti C.P.J., dos Santos H.P, Kohhann R., Alves B.J.R., Urquiaga S., Boddey R.M. (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil, Soil and Tillage Research 76, 39–58.

    Article  Google Scholar 

  • Six J., Elliott E.T., Paustian K. (1999) Aggregate and soil organic matter dynamics under conventional and no-tillage systems, Soil Science Society of America Journal 63, 1350–1358.

    Article  CAS  Google Scholar 

  • Six J., Feller C., Denef K., Ogle S.M., Sa J.C.M., Albrecht A. (2002) Soil organic matter, biota and aggregation in temperate and tropical soils – effects of no-tillage, Agronomie 22, 755–775.

    Article  Google Scholar 

  • Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R., Paustian K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practices in the long term, Global Change Biology 10, 155–160.

    Article  Google Scholar 

  • Testa V.M., Teixeira L.A.J., Mielniczuk J. (1992) Características químicas de um podzólico vermelho escuro afetada por sistemas de culturas, Revista Brasileira de Ciência do Solo 16, 107–114.

    CAS  Google Scholar 

  • Venzke Filho S.P., Siqueira Neto M., Piccolo M.C., Feigl J., Cerri C.C. (2002) Características químicas do solo em função do tempo de adoção do sistema plantio direto, in: FERTIBIO – Agricultura: Bases ecológicas Para o desenvolvimento social e econômico sustentado, Rio de Janeiro, Brazil.

    Google Scholar 

  • Weitz A.M., Linder E., Frolking S., Crill P.M, Keller M. (2001) N2O emissions from humid tropical agricultural soils: effects of soil moisture, texture and nitrogen avaibility, Soil Biology and Biochemistry 33, 1077–1093.

    Article  CAS  Google Scholar 

  • Yamulki S., Jarvis S.C. (2002) Short-term effects of tillage and compaction on nitrous oxide, nitric oxide, nitrogen dioxide, methane and carbon dioxide fluxes from grassland, Biology and Fertility of Soils 36, 224–231.

    Article  CAS  Google Scholar 

  • Zotarelli L., Alves B.J.R., Urquiaga S., Torres E., Paustian K., Boddey R.M., Six J. (2003) Efeito do preparo do solo nos agregados do solo e no conteúdo de matéria orgânica, in: XXXIV Congresso Brasileiro de Ciência do Solo, Ribeirão Preto, Brazil.

    Google Scholar 

Download references

Acknowledgements

Research work that lead to this publication was supported partly by the Fond Français pour l’Environnement Mondial (FFEM-Agroécologie), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo a Pesquisa do Estado de São Paulo (Fapesp) French Ministry of Foreign Affairs (MAE) and The Global Environmental Facility (Project no. GFL-2740–02–43–81). We alfso would like to thank E. Roose for being given the opportunity to present and write up this work for the Symposium “Land-Use, Carbon Sequestration and Erosion”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martial Bernoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Bernoux, M. et al. (2009). Cropping Systems, Carbon Sequestration and Erosion in Brazil: A Review. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_7

Download citation

Publish with us

Policies and ethics