Skip to main content

Functions of SUMO in the Maintenance of Genome Stability

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes
  • 482 Accesses

Abstract

Like in most other areas of cellular metabolism, the functions of the ubiquitin-like modifier SUMO in the maintenance of genome stability are manifold and varied. Perturbations of global sumoylation cause a wide spectrum of phenotypes associated with defects in DNA maintenance, such as hypersensitivity to DNA-damaging agents, gross chromosomal rearrangements and loss of entire chromosomes. Consistent with these observations, many key factors involved in various DNA repair pathways have been identified as SUMO substrates. However, establishing a functional connection between a given SUMO target, the cognate SUMO ligase and a relevant phenotype has remained a challenge, mainly because of the difficulties involved in identifying important modification sites and downstream effectors that specifically recognize the target in its sumoylated state. This review will discuss selected examples of SUMO’s actions in several DNA repair and genome maintenance pathways where the biological consequences of the modification have been elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ALT::

alternative lengthening of telomeres

BLM::

Bloom’s syndrome helicase

dsDNA::

double-stranded DNA

HU::

hydroxyurea

MEF::

mouse embryonic fibroblast

MMS::

Methyl methanesulfonate

PCNA::

proliferating cell nuclear antigen

PML::

promyelocytic leukaemia

rDNA::

ribosomal DNA

RING::

really interesting new gene

SIM::

SUMO interacting motif

SMC::

structural maintenance of chromosomes

ssDNA::

single-stranded DNA

TDG::

thymidine DNA glycosylase

WRN::

Werner’s syndrome helicase

References

  • Agostinho, M., Santos, V., Ferreira, F., Costa, R., Cardoso, J., Pinheiro, I., Rino, J., Jaffray, E., Hay, R. T. and Ferreira, J., 2008, Conjugation of human topoisomerase 2α with small ubiquitin-like modifiers 2/3 in response to topoisomerase inhibitors: cell cycle stage and chromosome domain specificity. Cancer Res. 68, 2409–2418.

    Article  PubMed  CAS  Google Scholar 

  • Ampatzidou, E., Irmisch, A., O’Connell, M. J. and Murray, J. M., 2006, Smc5/6 is required for repair at collapsed replication forks. Mol. Cell. Biol. 26, 9387–9401.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, E. A., Palecek, J., Sergeant, J., Taylor, E., Lehmann, A. R. and Watts, F. Z., 2005, Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage. Mol. Cell. Biol. 25, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Arakawa, H., Moldovan, G. L., Saribasak, H., Saribasak, N. N., Jentsch, S. and Buerstedde, J. M., 2006, A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol. 4, e366.

    Article  PubMed  CAS  Google Scholar 

  • Autexier, C. and Lue, N. F., 2006, The structure and function of telomerase reverse transcriptase. Annu. Rev. Biochem. 75, 493–517.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, Y., Arnaoutov, A., Anan, T. and Dasso, M., 2005, PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J. 24, 2172–2182.

    Article  PubMed  CAS  Google Scholar 

  • Azuma, Y., Arnaoutov, A. and Dasso, M., 2003, SUMO-2/3 regulates topoisomerase II in mitosis. J. Cell. Biol. 163, 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H. and Shirakawa, M., 2005, Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Baba, D., Maita, N., Jee, J. G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H. and Shirakawa, M., 2006, Crystal structure of SUMO-3-modified thymine-DNA glycosylase. J. Mol. Biol. 359, 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Bachant, J., Alcasabas, A., Blat, Y., Kleckner, N. and Elledge, S. J., 2002, The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol. Cell 9, 1169–1182.

    Article  PubMed  CAS  Google Scholar 

  • Bachrati, C. Z. and Hickson, I. D., 2008, RecQ helicases: guardian angels of the DNA replication fork. Chromosoma 117, 219–233.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, D. E. and Lindahl, T., 2004, Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu. Rev. Genet. 38, 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, P. and Cech, T. R., 2001, Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, C. B., Lewis, L. K., Karthikeyan, G., Lobachev, K. S., Jin, Y. H., Sterling, J. F., Snipe, J. R. and Resnick, M. A., 2001, Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29, 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Branzei, D. and Foiani, M., 2007, RecQ helicases queuing with Srs2 to disrupt Rad51 filaments and suppress recombination. Genes Dev. 21, 3019–3026.

    Article  PubMed  CAS  Google Scholar 

  • Branzei, D., Sollier, J., Liberi, G., Zhao, X., Maeda, D., Seki, M., Enomoto, T., Ohta, K. and Foiani, M., 2006, Ubc9- and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509–522.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, R. C., Rahman, S., Lisby, M., Rothstein, R. and Zhao, X., 2007, The Slx5-Slx8 complex affects sumoylation of DNA repair proteins and negatively regulates recombination. Mol. Cell. Biol. 27, 6153–6162.

    Article  PubMed  CAS  Google Scholar 

  • Bylebyl, G. R., Belichenko, I. and Johnson, E. S., 2003, The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278, 44113–44120.

    Article  PubMed  CAS  Google Scholar 

  • Champoux, J. J., 2001, DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413.

    Article  PubMed  CAS  Google Scholar 

  • Dawlaty, M. M., Malureanu, L., Jeganathan, K. B., Kao, E., Sustmann, C., Tahk, S., Shuai, K., Grosschedl, R. and van Deursen, J. M., 2008, Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIα. Cell 133, 103–115.

    Article  PubMed  CAS  Google Scholar 

  • de Lange, T., 2005, Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110.

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Martinez, L. A., Gimenez-Abian, J. F., Azuma, Y., Guacci, V., Gimenez-Martin, G., Lanier, L. M. and Clarke, D. J., 2006, PIASy is required for faithful chromosome segregation in human cells. PLoS ONE 1, e53.

    Article  PubMed  CAS  Google Scholar 

  • DiNardo, S., Voelkel, K. and Sternglanz, R., 1984, DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.

    Article  PubMed  CAS  Google Scholar 

  • Downes, C. S., Mullinger, A. M. and Johnson, R. T., 1991, Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc. Natl. Acad. Sci. USA 88, 8895–8899.

    Article  PubMed  CAS  Google Scholar 

  • Eladad, S., Ye, T. Z., Hu, P., Leversha, M., Beresten, S., Matunis, M. J. and Ellis, N. A., 2005, Intra-nuclear trafficking of the BLM helicase to DNA damage-induced foci is regulated by SUMO modification. Hum. Mol. Genet. 14, 1351–1365.

    Article  PubMed  CAS  Google Scholar 

  • Fousteri, M. I. and Lehmann, A. R., 2000, A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19, 1691–1702.

    Article  PubMed  CAS  Google Scholar 

  • Froelich-Ammon, S. J. and Osheroff, N., 1995, Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J. Biol. Chem. 270, 21429–21432.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, R. H. and Smolik, S., 2000, CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553–1577.

    PubMed  CAS  Google Scholar 

  • Goshima, G. and Yanagida, M., 2000, Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633.

    Article  PubMed  CAS  Google Scholar 

  • Gotta, M., Laroche, T., Formenton, A., Maillet, L., Scherthan, H. and Gasser, S. M., 1996, The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell. Biol. 134, 1349–1363.

    Article  PubMed  CAS  Google Scholar 

  • Granger, M. P., Wright, W. E. and Shay, J. W., 2002, Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol. 41, 29–40.

    Article  PubMed  Google Scholar 

  • Hanahan, D. and Weinberg, R. A., 2000, The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hardeland, U., Steinacher, R., Jiricny, J. and Schar, P., 2002, Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover. EMBO J. 21, 1456–1464.

    Article  PubMed  CAS  Google Scholar 

  • Ho, J. C. and Watts, F. Z., 2003, Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation. Biochem. J. 372, 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. and Jentsch, S., 2002, RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers, J. H., 2001, Genome maintenance mechanisms for preventing cancer. Nature 411, 366–374.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T. T. and D’Andrea, A. D., 2006, Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell. Biol. 7, 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Hug, N. and Lingner, J., 2006, Telomere length homeostasis. Chromosoma 115, 413–425.

    Article  PubMed  CAS  Google Scholar 

  • Ii, T., Fung, J., Mullen, J. R. and Brill, S. J., 2007a, The yeast Slx5-Slx8 DNA integrity complex displays ubiquitin ligase activity. Cell Cycle 6, 2800–2809.

    Article  PubMed  CAS  Google Scholar 

  • Ii, T., Mullen, J. R., Slagle, C. E. and Brill, S. J., 2007b, Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair 6, 1679–1691.

    Article  PubMed  CAS  Google Scholar 

  • Kawabe, Y., Seki, M., Seki, T., Wang, W. S., Imamura, O., Furuichi, Y., Saitoh, H. and Enomoto, T., 2000, Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein, SUMO-1. J. Biol. Chem. 275, 20963–20966.

    Article  PubMed  CAS  Google Scholar 

  • Kosoy, A., Calonge, T. M., Outwin, E. A. and O’Connell, M. J., 2007, Fission yeast Rnf4 homologs are required for DNA repair. J. Biol. Chem. 282, 20388–20394.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, C. W. and Christensen, R. B., 1979, Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J. Bacteriol. 139, 866–876.

    PubMed  CAS  Google Scholar 

  • Leach, C. A. and Michael, W. M., 2005, Ubiquitin/SUMO modification of PCNA promotes replication fork progression in Xenopus laevis egg extracts. J. Cell Biol. 171, 947–954.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, A. R., 2005, The role of SMC proteins in the responses to DNA damage. DNA Repair 4, 309–314.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann, A. R., Walicka, M., Griffiths, D. J., Murray, J. M., Watts, F. Z., McCready, S. and Carr, A. M., 1995, The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067–7080.

    PubMed  CAS  Google Scholar 

  • Li, W., Hesabi, B., Babbo, A., Pacione, C., Liu, J., Chen, D. J., Nickoloff, J. A. and Shen, Z., 2000, Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic Acids Res. 28, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  • Lindahl, T., 1993, Instability and decay of the primary structure of DNA. Nature 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  • Loeillet, S., Palancade, B., Cartron, M., Thierry, A., Richard, G. F., Dujon, B., Doye, V. and Nicolas, A., 2005, Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Repair 4, 459–468.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, I., Germe, T., Chevrier-Miller, M. and Hyrien, O., 2001, Topoisomerase II can unlink replicating DNA by precatenane removal. EMBO J. 20, 6509–6519.

    Article  PubMed  CAS  Google Scholar 

  • Lusk, C. P., Blobel, G. and King, M. C., 2007, Highway to the inner nuclear membrane: rules for the road. Nat. Rev. Mol. Cell Biol. 8, 414–420.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, D., Seki, M., Onoda, F., Branzei, D., Kawabe, Y. and Enomoto, T., 2004, Ubc9 is required for damage-tolerance and damage-induced interchromosomal homologous recombination in S. cerevisiae. DNA Repair 3, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Matic, I., van Hagen, M., Schimmel, J., Macek, B., Ogg, S. C., Tatham, M. H., Hay, R. T., Lamond, A. I., Mann, M. and Vertegaal, A. C., 2008, In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteomics 7, 132–144.

    PubMed  CAS  Google Scholar 

  • Matunis, M. J., Zhang, X. D. and Ellis, N. A., 2006, SUMO: the glue that binds. Dev. Cell 11, 596–597.

    Article  PubMed  CAS  Google Scholar 

  • McEachern, M. J., Krauskopf, A. and Blackburn, E. H., 2000, Telomeres and their control. Annu. Rev. Genet. 34, 331–358.

    Article  PubMed  CAS  Google Scholar 

  • Memisoglu, A. and Samson, L., 2000, Base excision repair in yeast and mammals. Mutat. Res. 451, 39–51.

    PubMed  CAS  Google Scholar 

  • Mohan, R. D., Rao, A., Gagliardi, J. and Tini, M., 2007, SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol. Cell. Biol. 27, 229–243.

    Article  PubMed  CAS  Google Scholar 

  • Moldovan, G. L., Pfander, B. and Jentsch, S., 2006, PCNA controls establishment of sister chromatid cohesion during S phase. Mol. Cell 23, 723–732.

    Article  PubMed  CAS  Google Scholar 

  • Motegi, A., Kuntz, K., Majeed, A., Smith, S. and Myung, K., 2006, Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 1424–1433.

    Article  PubMed  CAS  Google Scholar 

  • Mullen, J. R. and Brill, S. J., 2008, Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J. Biol. Chem. 283, 19912–19921.

    Article  PubMed  CAS  Google Scholar 

  • Mullen, J. R., Kaliraman, V., Ibrahim, S. S. and Brill, S. J., 2001, Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157, 103–118.

    PubMed  CAS  Google Scholar 

  • Muntoni, A. and Reddel, R. R., 2005, The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14 Spec No. 2, R191–R196.

    Article  PubMed  Google Scholar 

  • Nagai, S., Dubrana, K., Tsai-Pflugfelder, M., Davidson, M. B., Roberts, T. M., Brown, G. W., Varela, E., Hediger, F., Gasser, S. M. and Krogan, N. J., 2008, Functional targeting of DNA damage to a nuclear pore-associated SUMO-dependent ubiquitin ligase. Science 322, 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Ohuchi, T., Seki, M., Branzei, D., Maeda, D., Ui, A., Ogiwara, H., Tada, S. and Enomoto, T., 2008, Rad52 sumoylation and its involvement in the efficient induction of homologous recombination. DNA Repair 7, 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Papouli, E., Chen, S., Davies, A. A., Huttner, D., Krejci, L., Sung, P. and Ulrich, H. D., 2005, Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J. L., Bucceri, A., Davies, A. A., Heidrich, K., Windecker, H. and Ulrich, H. D., 2008, SUMO modification of PCNA is controlled by DNA. EMBO J. 27, 2422–2431.

    Article  PubMed  CAS  Google Scholar 

  • Pebernard, S., Schaffer, L., Campbell, D., Head, S. R. and Boddy, M. N., 2008, Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively. EMBO J. 27, 3011–3023.

    Article  PubMed  CAS  Google Scholar 

  • Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. and Jentsch, S., 2005, SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433.

    PubMed  CAS  Google Scholar 

  • Potts, P. R., Porteus, M. H. and Yu, H., 2006, Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P. R. and Yu, H., 2005, Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032.

    Article  PubMed  CAS  Google Scholar 

  • Potts, P. R. and Yu, H., 2007, The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat. Struct. Mol. Biol. 14, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Prudden, J., Pebernard, S., Raffa, G., Slavin, D. A., Perry, J. J., Tainer, J. A., McGowan, C. H. and Boddy, M. N., 2007, SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26, 4089–4101.

    Article  PubMed  CAS  Google Scholar 

  • Robert, T., Dervins, D., Fabre, F. and Gangloff, S., 2006, Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J. 25, 2837–2846.

    Article  PubMed  CAS  Google Scholar 

  • Roca, J., Ishida, R., Berger, J. M., Andoh, T. and Wang, J. C., 1994, Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc. Natl. Acad. Sci. USA 91, 1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Sacher, M., Pfander, B., Hoege, C. and Jentsch, S., 2006, Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat. Cell Biol. 8, 1284–1290.

    Article  PubMed  CAS  Google Scholar 

  • San Filippo, J., Sung, P. and Klein, H., 2008, Mechanism of eukaryotic homologous recombination. Annu. Rev. Biochem. 77, 229–257.

    Article  PubMed  CAS  Google Scholar 

  • Shamu, C. E. and Murray, A. W., 1992, Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J. Cell. Biol. 117, 921–934.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. and Chen, D. J., 1996a, Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics 37, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Z., Pardington-Purtymun, P. E., Comeaux, J. C., Moyzis, R. K. and Chen, D. J., 1996b, UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36, 271–279.

    Article  PubMed  CAS  Google Scholar 

  • Spink, K., Ho, J. C., Tanaka, K., Watts, F. Z. and Chambers, A., 2005, The telomere-binding protein Taz1p as a target for modification by a SUMO-1 homologue in fission yeast. Biochem. Genet. 43, 103–117.

    Article  PubMed  CAS  Google Scholar 

  • Spink, K. G., Evans, R. J. and Chambers, A., 2000, Sequence-specific binding of Taz1p dimers to fission yeast telomeric DNA. Nucleic Acids Res. 28, 527–533.

    Article  PubMed  CAS  Google Scholar 

  • Steinacher, R. and Schar, P., 2005, Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623.

    Article  PubMed  CAS  Google Scholar 

  • Stelter, P. and Ulrich, H. D., 2003, Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H., Leverson, J. D. and Hunter, T., 2007, Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102–4112.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Seki, M., Kobayashi, T., Kawabe, Y., Kaneko, H., Kondo, N., Harata, M., Mizuno, S., Masuko, T. and Enomoto, T., 2001, The N-terminal internal region of BLM is required for the formation of dots/rod-like structures which are associated with SUMO-1. Biochem. Biophys. Res. Commun. 286, 322–327.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Hatakeyama, S., Saitoh, H. and Nakayama, K. I., 2005, Noncovalent SUMO-1 binding activity of thymine DNA glycosylase (TDG) is required for its SUMO-1 modification and colocalization with the promyelocytic leukemia protein. J. Biol. Chem. 280, 5611–5621.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, Y., Yong-Gonzalez, V., Kikuchi, Y. and Strunnikov, A., 2006, SIZ1/SIZ2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics 172, 783–794.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Nishide, J., Okazaki, K., Kato, H., Niwa, O., Nakagawa, T., Matsuda, H., Kawamukai, M. and Murakami, Y., 1999, Characterization of a fission yeast SUMO-1 homologue, Pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 19, 8660–8672.

    PubMed  CAS  Google Scholar 

  • Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H., Naismith, J. H. and Hay, R. T., 2001, Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, E. M., Copsey, A. C., Hudson, J. J., Vidot, S. and Lehmann, A. R., 2008, Identification of the proteins, including MAGEG1, that make up the human SMC5-6 protein complex. Mol. Cell. Biol. 28, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  • Therizols, P., Fairhead, C., Cabal, G. G., Genovesio, A., Olivo-Marin, J. C., Dujon, B. and Fabre, E., 2006, Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. J. Cell Biol. 172, 189–199.

    Article  PubMed  CAS  Google Scholar 

  • Tini, M., Benecke, A., Um, S. J., Torchia, J., Evans, R. M. and Chambon, P., 2002, Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol. Cell 9, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Torres, J. Z., Bessler, J. B. and Zakian, V. A., 2004a, Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiaeDNA helicase Rrm3p. Genes Dev. 18, 498–503.

    Article  PubMed  CAS  Google Scholar 

  • Torres, J. Z., Schnakenberg, S. L. and Zakian, V. A., 2004b, Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24, 3198–3212.

    Article  PubMed  CAS  Google Scholar 

  • Torres-Rosell, J., Sunjevaric, I., De Piccoli, G., Sacher, M., Eckert-Boulet, N., Reid, R., Jentsch, S., Rothstein, R., Aragon, L. and Lisby, M., 2007, The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, H. D., 2005, The RAD6 pathway: control of DNA damage bypass and mutagenesis by ubiquitin and SUMO. Chembiochem 6, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich, H. D., 2008, The fast-growing business of SUMO chains. Mol. Cell 32, 301–305.

    Article  PubMed  CAS  Google Scholar 

  • Uzunova, K., Gottsche, K., Miteva, M., Weisshaar, S. R., Glanemann, C., Schnellhardt, M., Niessen, M., Scheel, H., Hofmann, K., Johnson, E. S., Praefcke, G. J. and Dohmen, R. J., 2007, Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282, 34167–34175.

    Article  PubMed  CAS  Google Scholar 

  • Veaute, X., Jeusset, J., Soustelle, C., Kowalczykowski, S. C., Le Cam, E. and Fabre, F., 2003, The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Verdun, R. E. and Karlseder, J., 2007, Replication and protection of telomeres. Nature 447, 924–931.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Q. E., Zhu, Q., Wani, G., El-Mahdy, M. A., Li, J. and Wani, A. A., 2005, DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation. Nucleic Acids Res. 33, 4023–4034.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Jones, G. M. and Prelich, G., 2006, Genetic analysis connects SLX5 and SLX8 to the SUMO pathway in Saccharomyces cerevisiae. Genetics 172, 1499–1509.

    Article  PubMed  CAS  Google Scholar 

  • Warsi, T. H., Navarro, M. S. and Bachant, J., 2008, DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol. Biol. Cell 19, 4421–4433.

    Article  PubMed  CAS  Google Scholar 

  • Watson, J. D., 1972, Origin of concatemeric T7 DNA. Nature New Biol. 239, 197–201.

    Article  PubMed  CAS  Google Scholar 

  • Watts, F. Z., Skilton, A., Ho, J. C., Boyd, L. K., Trickey, M. A., Gardner, L., Ogi, F. X. and Outwin, E. A., 2007, The role of Schizosaccharomyces pombe SUMO ligases in genome stability. Biochem. Soc. Trans. 35, 1379–1384.

    Article  PubMed  CAS  Google Scholar 

  • Windecker, H. and Ulrich, H. D., 2008, Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J. Mol. Biol. 376, 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Xhemalce, B., Riising, E. M., Baumann, P., Dejean, A., Arcangioli, B. and Seeler, J. S., 2007, Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl. Acad. Sci. USA 104, 893–898.

    Article  PubMed  CAS  Google Scholar 

  • Xhemalce, B., Seeler, J. S., Thon, G., Dejean, A. and Arcangioli, B., 2004, Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance. EMBO J. 23, 3844–3853.

    Article  PubMed  CAS  Google Scholar 

  • Xie, Y., Kerscher, O., Kroetz, M. B., McConchie, H. F., Sung, P. and Hochstrasser, M., 2007, The yeast Hex3-Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282, 34176–34184.

    Article  PubMed  CAS  Google Scholar 

  • Yeager, T. R., Neumann, A. A., Englezou, A., Huschtscha, L. I., Noble, J. R. and Reddel, R. R., 1999, Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179.

    PubMed  CAS  Google Scholar 

  • Yeh, E., Haase, J., Paliulis, L. V., Joglekar, A., Bond, L., Bouck, D., Salmon, E. D. and Bloom, K. S., 2008, Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90.

    Article  PubMed  CAS  Google Scholar 

  • Yurchenko, V., Xue, Z. and Sadofsky, M. J., 2006, SUMO modification of human XRCC4 regulates its localization and function in DNA double-strand break repair. Mol. Cell. Biol. 26, 1786–1794.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C., Roberts, T. M., Yang, J., Desai, R. and Brown, G. W., 2006, Suppression of genomic instability by SLX5 and SLX8 in Saccharomyces cerevisiae. DNA Repair 5, 336–346.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, X. and Blobel, G., 2005, A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102, 4777–4782.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Our work is supported by a predoctoral fellowship from the Boehringer Ingelheim Foundation (to N. Z.) and by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helle D. Ulrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zilio, N., Ulrich, H.D. (2009). Functions of SUMO in the Maintenance of Genome Stability. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_5

Download citation

Publish with us

Policies and ethics