Skip to main content

SUMO Modification and Transcriptional Regulation

  • Chapter
  • First Online:
SUMO Regulation of Cellular Processes
  • 512 Accesses

Abstract

Transcriptional regulation is a complex multistep process involving numerous protein-protein and protein nucleic acid interactions influenced by post-translational modifications. Both sequence specific DNA binding factors as well as coregulator proteins are targets of sumoylation, and many of the paradigms for SUMO-mediated effects have been identified in the context of transcriptional regulation. Although SUMO modification is most commonly associated with transcriptional repression, it is now evident that this modification is utilized in multiple contexts to regulate the assembly, function and disassembly of multiprotein and nucleic acid transcription complexes. By focusing on specific DNA binding factors and their coregulators, the goal of this chapter is to provide representative examples that illustrate the pervasive and dramatic influence of sumoylation on transcriptional regulation and provide insights on the underlying mechanisms and factors involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander Hoffmann, D. B., 2006, Circuitry of nuclear factor κ-b signaling. Immunol. Rev. 210, 171–186.

    Article  PubMed  Google Scholar 

  • Angerer, N. D., Du, Y., Nalbant, D. and Williams, S. C., 1999, A short conserved motif is required for repressor domain function in the myeloid-specific transcription factor CCAAT/enhancer-binding protein epsilon. J. Biol. Chem. 274, 4147–4154.

    Article  PubMed  CAS  Google Scholar 

  • Antoine, K., Prosperi, M. T., Ferbus, D., Boule, C. and Goubin, G., 2005, A kruppel zinc finger of znf 146 interacts with the sumo-1 conjugating enzyme Ubc9 and is sumoylated in vivo. Mol. Cell. Biochem. 271, 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Arnosti, D. N. and Kulkarni, M. M., 2005, Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890–898.

    Article  PubMed  CAS  Google Scholar 

  • Baba, D., Maita, N., Jee, J.-G., Uchimura, Y., Saitoh, H., Sugasawa, K., Hanaoka, F., Tochio, H., Hiroaki, H. and Shirakawa, M., 2005, Crystal structure of thymine DNA glycosylase conjugated to SUMO-1. Nature 435, 979–982.

    Article  PubMed  CAS  Google Scholar 

  • Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D., 2002, Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356.

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe, R. K., Montana, V. G., Stanley, T. B., Delves, C. J., Apolito, C. J., Mckee, D. D., Consler, T. G., Parks, D. J., Stewart, E. L., Willson, T. M., Lambert, M. H., Moore, J. T., Pearce, K. H. and Xu, H. E., 2002, Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Callewaert, L., Verrijdt, G., Haelens, A. and Claessens, F., 2004, Differential effect of small ubiquitin-like modifier (SUMO)-ylation of the androgen receptor in the control of cooperativity on selective versus canonical response elements. Mol. Endocrinol. 18, 1438–1449.

    Article  PubMed  CAS  Google Scholar 

  • Carey, M., 1998, The enhanceosome and transcriptional synergy. Cell 92, 5–8.

    Article  PubMed  CAS  Google Scholar 

  • Chang, C. C., Lin, D. Y., Fang, H. I., Chen, R. H. and Shih, H. M., 2005, Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of smad4. J. Biol. Chem. 280, 10164–10173.

    Article  PubMed  CAS  Google Scholar 

  • Chauchereau, A., Amazit, L., Quesne, M., Guiochon-Mantel, A. and Milgrom, E., 2003, Sumoylation of the progesterone receptor and of the steroid receptor coactivator src-1. J. Biol. Chem. 278, 12335–12343.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W. Y., Lee, W. C., Hsu, N. C., Huang, F. and Chung, B. C.,2004, SUMO modification of repression domains modulates function of nuclear receptor 5a1 (steroidogenic factor-1). J. Biol. Chem. 279, 38730–38735.

    Article  PubMed  CAS  Google Scholar 

  • Chun, T. H., Itoh, H., Subramanian, L., Iñiguez-Lluhí, J. A. and Nakao, K., 2003, Modification of gata-2 transcriptional activity in endothelial cells by the SUMO E3 ligase PIASy. Circ. Res. 92, 1201–1208.

    Article  PubMed  CAS  Google Scholar 

  • Chupreta, S., Brevig, H., Bai, L., Merchant, J. L. and Iñiguez Lluhí, J. A., 2007, Sumoylation-dependent control of homotypic and heterotypic synergy by the kruppel-type zinc finger protein zbp-89. J. Biol. Chem. 282, 36155–36166.

    Article  PubMed  CAS  Google Scholar 

  • Chupreta, S., Holmstrom, S., Subramanian, L. and Iñiguez-Lluhí, J. A., 2005, A small conserved surface in sumo is the critical structural determinant of its transcriptional inhibitory properties. Mol. Cell. Biol. 25, 4272–4282.

    Article  PubMed  CAS  Google Scholar 

  • Courey, A. J. and Jia, S., 2001, Transcriptional repression: the long and the short of it. Genes Dev. 15, 2786–2796.

    PubMed  CAS  Google Scholar 

  • Degerny, C., De Launoit, Y. and Baert, J. L., 2008, Erm transcription factor contains an inhibitory domain which functions in sumoylation-dependent manner. Biochim. Biophys. Acta. 1779, 183–194.

    PubMed  CAS  Google Scholar 

  • Dennig, J., Beato, M. and Suske, G., 1996, An inhibitor domain in sp3 regulates its glutamine-rich activation domains. EMBO J. 15, 5659–5667.

    PubMed  CAS  Google Scholar 

  • Desterro, J. M., Rodriguez, M. S. and Hay, R. T., 1998, SUMO-1 modification of ikappabalpha inhibits NF-kappab activation. Mol. Cell 2, 233–239.

    Article  PubMed  CAS  Google Scholar 

  • Girdwood, D., Bumpass, D., Vaughan, O. A., Thain, A., Anderson, L. A., Snowden, A. W., Garcia-Wilson, E., Perkins, N. D. and Hay, R. T., 2003, P300 transcriptional repression is mediated by sumo modification. Mol. Cell 11, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Del Arco, P., Koipally, J. and Georgopoulos, K., 2005, Ikaros sumoylation: switching out of repression. Mol. Cell. Biol. 25, 2688–2697.

    Article  PubMed  Google Scholar 

  • Gong, Z., Brackertz, M. and Renkawitz, R., 2006, SUMO modification enhances p66-mediated transcriptional repression of the mi-2/nurd complex. Mol. Cell. Biol. 26, 4519–4528.

    Article  PubMed  CAS  Google Scholar 

  • Goodson, M. L., Hong, Y., Rogers, R., Matunis, M. J., Park-Sarge, O. K. and Sarge, K. D., 2001, SUMO-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J. Biol. Chem. 276, 18513–18518.

    Article  PubMed  CAS  Google Scholar 

  • Hay, R. T., 2005, Sumo: a history of modification. Mol. Cell 18, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Hecker, C.-M., Rabiller, M., Haglund, K., Bayer, P. and Dikic, I., 2006, Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 281, 16117–16127.

    Article  PubMed  CAS  Google Scholar 

  • Hietakangas, V., Anckar, J., Blomster, H. A., Fujimoto, M., Palvimo, J. J., Nakai, A. and Sistonen, L., 2006, Pdsm, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. U.S.A. 103, 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Hilgarth, R. S., Murphy, L. A., O'connor, C. M., Clark, J. A., Park-Sarge, O. K. and Sarge, K. D., 2004, Identification of Xenopus heat shock transcription factor-2: Conserved role of sumoylation in regulating deoxyribonucleic acid-binding activity of heat shock transcription factor-2 proteins. Cell Stress Chaperones 9, 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom, S., Van Antwerp, M. E. and Iñiguez-Lluhí, J. A., 2003, Direct and distinguishable inhibitory roles for SUMO isoforms in the control of transcriptional synergy. Proc. Natl. Acad. Sci. U.S.A. 100, 15758–15763.

    Article  PubMed  CAS  Google Scholar 

  • Holmstrom, S. E., Chupreta, S., So, A. Y. and Iñiguez Lluhí, J. A., 2008, SUMO-mediated inhibition of glucocorticoid receptor synergistic activity depends on stable assembly at the promoter but not on daxx. Mol. Endocrinol. 22, 2061–2075.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H., Kohli, K., Trivedi, A., Johnson, D. L. and Stallcup, M. R., 1996, Grip 1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. U.S.A. 93, 4948–4952.

    Article  PubMed  CAS  Google Scholar 

  • Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. and Miyamoto, S., 2003, Sequential modification of NEMO/ikkgamma by SUMO-1 and ubiquitin mediates NF-kappab activation by genotoxic stress. Cell 115, 565–576.

    Article  PubMed  CAS  Google Scholar 

  • Iñiguez-Lluhí, J. A., Lou, D. Y. and Yamamoto, K. R., 1997, Three amino acid substitutions selectively disrupt the activation but not the repression function of the glucocorticoid receptor n-terminus. J. Biol. Chem. 272, 4149–4156.

    Article  PubMed  Google Scholar 

  • Iñiguez-Lluhí, J. A. and Pearce, D., 2000, A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol. Cell. Biol. 20,6040–6050.

    Article  PubMed  Google Scholar 

  • Istrail, S. and Davidson, E. H., 2005, Logic functions of the genomic cis-regulatory code. Proc. Natl. Acad. Sci. U.S.A. 102, 4954–4959.

    Article  PubMed  CAS  Google Scholar 

  • Ivanov, A. V., Peng, H., Yurchenko, V., Yap, K. L., Negorev, D. G., Schultz, D. C., Psulkowski, E., Fredericks, W. J., White, D. E., Maul, G. G., Sadofsky, M. J., Zhou, M. M. and Rauscher, F. J., 3rd, 2007, Phd domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol. Cell 28, 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Izumiya, Y., Ellison, T. J., Yeh, E. T., Jung, J. U., Luciw, P. A. and Kung, H. J., 2005, Kaposi's sarcoma-associated herpesvirus k-bzip represses gene transcription via sumo modification. J. Virol. 79, 9912–9925.

    Article  PubMed  CAS  Google Scholar 

  • Izzi, L., Narimatsu, M. and Attisano, L., 2008, Sumoylation differentially regulates goosecoid-mediated transcriptional repression. Exp. Cell Res. 314, 1585–1594.

    Article  PubMed  CAS  Google Scholar 

  • Kamitani, T., Nguyen, H. P. and Yeh, E. T., 1997, Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. J. Biol. Chem. 272, 14001–14004.

    Article  PubMed  CAS  Google Scholar 

  • Komatsu, T., Mizusaki, H., Mukai, T., Ogawa, H., Baba, D., Shirakawa, M., Hatakeyama, S., Nakayama, K. I., Yamamoto, H., Kikuchi, A. and Morohashi, K., 2004, Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of ad4 binding protein/steroidogenic factor 1 (ad4bp/sf-1) regulates synergistic transcription between ad4bp/sf-1 and sox9. Mol. Endocrinol. 18, 2451–2462.

    Article  PubMed  CAS  Google Scholar 

  • Kotaja, N., Karvonen, U., Janne, O. A. and Palvimo, J. J., 2002, The nuclear receptor interaction domain of grip1 is modulated by covalent attachment of SUMO-1. J. Biol. Chem. 277,30283–30288.

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B. and De the, H., 2008, Arsenic degrades PML or PML-raralpha through a SUMO-triggered rnf4/ubiquitin-mediated pathway. Nat. Cell. Biol. 10, 547–555.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. B., Lebedeva, L. A., Suzawa, M., Wadekar, S. A., Desclozeaux, M. and Ingraham, H. A., 2005, The dead-box protein dp103 (ddx20 or gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol. Cell. Biol. 25, 1879–1890.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. K., Thomas, S. N., Yang, A. J. and Ann, D. K., 2007, Doxorubicin down-regulates kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21waf1/cip1 in breast cancer mcf-7 cells. J. Biol. Chem. 282, 1595–1606.

    Article  PubMed  CAS  Google Scholar 

  • Lehembre, F., Badenhorst, P., Muller, S., Travers, A., Schweisguth, F. and Dejean, A., 2000, Covalent modification of the transcriptional repressor tramtrack by the ubiquitin-related protein smt3 in drosophila flies. Mol. Cell. Biol. 20, 1072–1082.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D. Y., Fang, H. I., Ma, A. H., Huang, Y. S., Pu, Y. S., Jenster, G., Kung, H. J. and Shih, H. M., 2004, Negative modulation of androgen receptor transcriptional activity by DAXX. Mol. Cell. Biol. 24, 10529–10541.

    Article  PubMed  CAS  Google Scholar 

  • Lin, D. Y., Huang, Y. S., Jeng, J. C., Kuo, H. Y., Chang, C. C., Chao, T. T., Ho, C. C., Chen, Y. C., Lin, T. P., Fang, H. I., Hung, C. C., Suen, C. S., Hwang, M. J., Chang, K. S., Maul, G. G. and Shih, H. M., 2006, Role of SUMO-interacting motif in DAXX SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354.

    Article  PubMed  CAS  Google Scholar 

  • Lin, X., Sun, B., Liang, M., Liang, Y. Y., Gast, A., Hildebrand, J., Brunicardi, F. C., Melchior, F. and Feng, X. H., 2003, Opposed regulation of corepressor ctbp by sumoylation and PDZ binding. Mol. Cell 11, 1389–1396.

    Article  PubMed  CAS  Google Scholar 

  • Lyst, M. J., Nan, X. and Stancheva, I., 2006, Regulation of mbd1-mediated transcriptional repression by SUMO and PIAS proteins. EMBO J. 25, 5317–5328.

    Article  PubMed  CAS  Google Scholar 

  • Mabb, A. M., Wuerzberger-Davis, S. M. and Miyamoto, S., 2006, PIASy mediates NEMO sumoylation and nf-kappab activation in response to genotoxic stress. Nat. Cell Biol. 8, 986–993.

    Article  PubMed  CAS  Google Scholar 

  • Mascle, X. H., Germain-Desprez, D., Huynh, P., Estephan, P. and Aubry, M., 2007, Sumoylation of the transcriptional intermediary factor 1beta (tif1beta), the co-repressor of the krab multifinger proteins, is required for its transcriptional activity and is modulated by the krab domain. J. Biol. Chem. 282, 10190–10202.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, S. and Iñiguez-Lluhí, J. A. (in preparation) Distinct mutations linked to androgen insensitivity and prostate cancer target the synergy control/sumoylation motifs of the androgen receptor.

    Google Scholar 

  • Ou, Q., Mouillet, J. F., Yan, X., Dorn, C., Crawford, P. A. and Sadovsky, Y., 2001, The dead box protein dp103 is a regulator of steroidogenic factor-1. Mol. Endocrinol. 15, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Pascual, G., Fong, A. L., Ogawa, S., Gamliel, A., Li, A. C., Perissi, V., Rose, D. W., Willson, T. M., Rosenfeld, M. G. and Glass, C. K., 2005, A sumoylation-dependent pathway mediates transrepression of inflammatory response genes by ppar-gamma. Nature 437, 759–763.

    Article  PubMed  CAS  Google Scholar 

  • Perdomo, J., Verger, A., Turner, J. and Crossley, M., 2005, Role for SUMO modification in facilitating transcriptional repression by bklf. Mol. Cell. Biol. 25, 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  • Poukka, H., Karvonen, U., Janne, O. A. and Palvimo, J. J., 2000, Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc. Natl. Acad. Sci. U.S.A. 97, 14145–14150.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M., 1988, How eukaryotic transcriptional activators work. Nature 365, 683–689.

    Article  Google Scholar 

  • Reid, G., Gallais, R. and Metivier, R., 2009, Marking time: the dynamic role of chromatin and covalent modification in transcription. Int. J. Biochem. Cell Biol. 41, 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Reverter, D. and Lima, C. D., 2005, Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-nup358 complex. Nature 435, 687–692.

    Article  PubMed  CAS  Google Scholar 

  • Riefler, G. M. and Firestein, B. L., 2001, Binding of neuronal nitric-oxide synthase (nnos) to carboxyl-terminal-binding protein (ctbp) changes the localization of ctbp from the nucleus to the cytosol: a novel function for targeting by the PDZ domain of nnos. J. Biol. Chem. 276, 48262–48268.

    PubMed  CAS  Google Scholar 

  • Rosendorff, A., Sakakibara, S., Lu, S., Kieff, E., Xuan, Y., Dibacco, A., Shi, Y., Shi, Y. and Gill, G., 2006, Nxp-2 association with SUMO-2 depends on lysines required for transcriptional repression. Proc. Natl. Acad. Sci. U.S.A. 103, 5308–5313.

    Article  PubMed  CAS  Google Scholar 

  • Ross, S., Best, J. L., Zon, L. I. and Gill, G., 2002, SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol. Cell 10, 831–842.

    Article  PubMed  CAS  Google Scholar 

  • Rytinki, M. M. and Palvimo, J. J., 2008, Sumoylation modulates the transcription repressor function of rip140. J. Biol. Chem. 283, 11586–11595.

    Article  PubMed  CAS  Google Scholar 

  • Sachdev, S., Bruhn, L., Sieber, H., Pichler, A., Melchior, F. and Grosschedl, R., 2001, PIASy, a nuclear matrix-associated SUMO E3 ligase, represses lef1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103.

    Article  PubMed  CAS  Google Scholar 

  • Sekiyama, N., Ikegami, T., Yamane, T., Ikeguchi, M., Uchimura, Y., Baba, D., Ariyoshi, M., Tochio, H., Saitoh, H. and Shirakawa, M., 2008, Structure of the small ubiquitin-like modifier (SUMO)-interacting motif of mbd1-containing chromatin-associated factor 1 bound to SUMO-3. J. Biol. Chem. 283, 35966–35975.

    Article  PubMed  CAS  Google Scholar 

  • Siatecka, M., Xue, L. and Bieker, J. J., 2007, Sumoylation of eklf promotes transcriptional repression and is involved in inhibition of megakaryopoiesis. Mol. Cell. Biol. 27, 8547–8560.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Durrin, L. K., Wilkinson, T. A., Krontiris, T. G. and Chen, Y., 2004, Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. U.S.A. 101, 14373–14378.

    Article  PubMed  CAS  Google Scholar 

  • Stielow, B., Sapetschnig, A., Kruger, I., Kunert, N., Brehm, A., Boutros, M. and Suske, G., 2008, Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol. Cell 29, 742–754.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, L., Benson, M. D. and Iñiguez-Lluhí, J. A., 2003, A synergy control motif within the attenuator domain of ccaat/enhancer-binding protein alpha inhibits transcriptional synergy through its PIASy-enhanced modification by SUMO-1 or SUMO-3. J. Biol. Chem. 278, 9134–9141.

    Article  PubMed  CAS  Google Scholar 

  • Tateishi, Y., Ariyoshi, M., Igarashi, R., Hara, H., Mizuguchi, K., Seto, A., Nakai, A., Kokubo, T., Tochio, H. and Shirakawa, M., 2008, Molecular basis for sumoylation-dependent regulation of DNA binding activity of heat shock factor 2. J. Biol. Chem. 284, 2435–4247.

    Google Scholar 

  • Tiefenbach, J., Novac, N., Ducasse, M., Eck, M., Melchior, F. and Heinzel, T., 2006, Sumoylation of the corepressor n-cor modulates its capacity to repress transcription. Mol. Biol. Cell. 17, 1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Tirard, M., Almeida, O. F., Hutzler, P., Melchior, F. and Michaelidis, T. M., 2007, Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol. Cell. Endocrinol. 268, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Tomita, A., Watanabe, T., Kosugi, H., Ohashi, H., Uchida, T., Kinoshita, T., Mizutani, S., Hotta, T., Murate, T., Seto, M. and Saito, H., 1998, Truncated c-myb expression in the human leukemia cell line tk-6. Leukemia 12, 1422–1429.

    Article  PubMed  CAS  Google Scholar 

  • Vatsyayan, J., Qing, G., Xiao, G. and Hu, J., 2008, SUMO1 modification of nf-kappab2/p100 is essential for stimuli-induced p100 phosphorylation and processing. EMBO Rep. 9, 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Wei, H., Wang, X., Gan, B., Urvalek, A. M., Melkoumian, Z. K., Guan, J. L. and Zhao, J., 2006, Sumoylation delimits klf8 transcriptional activity associated with the cell cycle regulation. J. Biol. Chem. 281, 16664–16671.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, E. A., Xu, H. N., Gombart, A. F., Verbeek, W., Chumakov, A. M., Friedman, A. D. and Koeffler, H. P., 1998, Identification of transcriptional activation and repression domains in human ccaat/enhancer-binding protein epsilon. J. Biol. Chem. 273, 14796–14804.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H., Sun, L., Zhang, Y., Chen, Y., Shi, B., Li, R., Wang, Y., Liang, J., Fan, D., Wu, G., Wang, D., Li, S. and Shang, Y., 2006, Coordinated regulation of aib1 transcriptional activity by sumoylation and phosphorylation. J. Biol. Chem. 281, 21848–21856.

    Article  PubMed  CAS  Google Scholar 

  • Wu, R. C., Feng, Q., Lonard, D. M. and O'malley, B. W., 2007, Src-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129, 1125–1140.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, K. R., Darimont, B. D., Wagner, R. L. and Iñiguez-Lluhí, J. A., 1998, Building transcriptional regulatory complexes: Signals and surfaces. Cold Spring Harbor Symp. Quant. Biol. 63, 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. H. and Sharrocks, A. D., 2004, SUMO promotes HDAC-mediated transcriptional repression. Mol. Cell. 13, 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W.-S., Heaton, J. H., Brevig, H., Mukherjee, S., Iñiguez-Lluhí, J. A. and Hammer, G. D., 2009, Sumoylation inhibits Sf-1 activity by reducing cdk7 mediated ser 203 phosphorylation. Mol. Cell. Biol. 29, 613–625.

    Google Scholar 

  • Zeng, L., Yap, K. L., Ivanov, A. V., Wang, X., Mujtaba, S., Plotnikova, O., Rauscher, F. J., 3rd and Zhou, M. M., 2008, Structural insights into human kap1 PHD finger-bromodomain and its role in gene silencing. Nat. Struct. Mol. Biol. 15, 626–633.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, G. and Yang, Y. C., 2004, Znf76, a novel transcriptional repressor targeting tata-binding protein, is modulated by sumoylation. J. Biol. Chem. 279, 42410–42421.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the many research groups that have contributed significantly to the field but could not be specifically mentioned due to space limitations. Thanks are also extended to present and former members of the author’s research group, which is supported by United States Public Health Service Grant DK61656.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Iñiguez-Lluhí .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Iñiguez-Lluhí, J.A. (2009). SUMO Modification and Transcriptional Regulation. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2649-1_2

Download citation

Publish with us

Policies and ethics