Skip to main content

Complex Symmetry, Jordan Blocks and Microscopic Self-organization

An Examination of the Limits of Quantum Theory Based on Nonself-adjoint Extensions with Illustrations from Chemistry and Physics

  • Conference paper
SelfOrganization of Molecular Systems

The basis and motivation for extending quantum mechanics beyond its traditional domain are recognized and examined. The mathematical details are briefly discussed and a convenient compact complex symmetric representation derived. An original formula is proved and demonstrated to incorporate general Jordan block configurations characterized by Segrè characteristics larger than one. It is verified that these triangular forms can portray realistic evolutions via maps established both within fundamental quantum mechanics as well as within a generalized thermodynamic formulation displaying features that are reminiscent of self-organization on a microscopic level. Various applications of these so-called coherent dissipative structures in physics and chemistry are pointed out, and discussed with possible inferences also made to the biological domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1965, 2nd edition, 1976).

    Google Scholar 

  2. A. S. Davydov, Solitons in Molecular Systems (Kluwer, Dordrecht, 1985).

    Google Scholar 

  3. Stuart A. Kauffman, Reinventing the Sacred (Perseus Books Group/Basic Books, New York, 2008).

    Google Scholar 

  4. P. O. Löwdin, Linear Algebra for Quantum Theory (Wiley, New York, 1998).

    Google Scholar 

  5. E. J. Brändas, Relaxation Processes and Coherent Dissipative Structures. In: Dynamics During Spectroscopic Transitions, edited by E. Lippert and J. D. Macomber, Springer Verlag, Berlin, 148–193 (1995).

    Google Scholar 

  6. E. J. Brändas, Applications of CSM Theory. In: Dynamics During Spectroscopic Transitions, edited by E. Lippert and J. D. Macomber, Springer Verlag, Berlin, 194–241 (1995).

    Google Scholar 

  7. E. J. Brändas, Quantum Mechanics and the Special- and General Theory of Relativity, Adv. Quant. Chem. 54, 115–132 (2008).

    Article  Google Scholar 

  8. E. Schrödinger, Quantisierung als Eigenwertproblem, Annalen der Physik 79, 361–376 (1926).

    Article  Google Scholar 

  9. Harold V. McIntosh, Quantization as an Eigenvalue Problem. In Group Theory and Its Applications, Vol. 3, edited by Ernest M. Loebl, Academic, New York, 333–368 (1975).

    Google Scholar 

  10. H. Weyl, Ü ber gewöhnliche Differentialgleichungen mit Singularitäten und die zuge- hörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68, 220–269 (1910).

    Article  Google Scholar 

  11. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations (Oxford University Press, London, Vols. 1 and 2, 1946).

    Google Scholar 

  12. R. G. Newton, Scattering Theory of Waves and Particles (Springer Verlag, New York, 2nd edition, 1982).

    Google Scholar 

  13. M. Hehenberger, H. V. McIntosh and E. Brändas, Weyl's Theory Applied to the Stark Effect in the Hydrogen Atom, Phys. Rev. A10, 1494–1506 (1974).

    Google Scholar 

  14. E. Brändas and M. Hehenberger, Determination of Weyl's m-Coefficient for a Continuous Spectrum, Lect Notes Math. 415, 316–322 (1974).

    Article  Google Scholar 

  15. E. Brändas, M. Rittby and N. Elander, Titchmarsh-Weyl Theory And Its Relations to Scattering Theory: Spectral Densities and Cross Sections; Theory and Applications, J. Math. Phys. 26, 2648–2658 (1985).

    Article  Google Scholar 

  16. E. Engdahl, E. Brändas, M. Rittby and N. Elander, Resonances and Background: A Decomposition of Scattering Information, Phys. Rev. A37, 3777–3789 (1988).

    Google Scholar 

  17. E. Brändas and N. Elander, Editors: Resonances—The Unifying Route Towards the Formulation of Dynamical Processes—Foundations and Applications in Nuclear, Atomic and Molecular Physics, Springer Verlag, Berlin, Lecture Notes in Physics, Vol. 325, 1–564 (1989).

    Google Scholar 

  18. E. Balslev and J. M. Combes, Spectral Properties of Many-Body Schrödinger Operators with Dilatation-Analytic Interactions, Commun. Math. Phys. 22, 280–294 (1971).

    Article  Google Scholar 

  19. P. O. Löwdin, Scaling Problem, Virial Theorem, and Connected Relations in Quantum Mechanics, J. Mol. Spectrosc. 3, 46–66 (1959).

    Article  Google Scholar 

  20. E. Brändas and P. Froelich, Continuum Orbitals, Complex Scaling, and the Extended Virial Theorem, Phys. Rev. A16, 2207–2210 (1977).

    Google Scholar 

  21. C. E. Reid and E. Brändas, On a Theorem for Complex Symmetric Matrices and its Relevance in the Study of Decay Phenomena, Lect. Notes Phys. Vol. 325,476–483 (1989).

    Google Scholar 

  22. E. Brändas, Resonances and Dilatation Analyticity in Liouville Space, Adv. Chem. Phys. 99, 211–244 (1997).

    Article  Google Scholar 

  23. F. R. Gantmacher, The Theory of Matrices (Chelsea, New York, Vols. I, II, 1959).

    Google Scholar 

  24. A. J. Coleman and V I. Yukalov, Reduced Density Matrices: Coulson's Challenge, Lecture Notes in Chemistry (Springer-Verlag, Berlin, 72, 2000).

    Google Scholar 

  25. C. N. Yang, Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid He and of Superconductors, Rev. Mod. Phys. 34, 694–704 (1962).

    Article  CAS  Google Scholar 

  26. C. H. Obcemea and E. Brändas, Analysis of Prigogine's Theory of Subdynamics, Ann. Phys. 151, 383–430 (1983).

    Article  CAS  Google Scholar 

  27. I. Prigogine, From Being to Becoming, (Freeman WH, San Fransisco, 1980).

    Google Scholar 

  28. E. B. Karlsson and E. Brändas, Modern Studies of Basic Quantum Concepts and Phenomena, Phys. Scripta T76, 7–15 (1998).

    Article  CAS  Google Scholar 

  29. C. A. Chatzidimitriou-Dreismann and E. J. Brandas, Proton Delocalization and Thermally Activated Quantum Correlations in Water: Complex Scaling and New Experimental Results. Ber. Bunsenges, Phys. Chem. 95, 263–272 (1991).

    CAS  Google Scholar 

  30. E. J. Brändas, Are Einstein's Laws of Relativity a Quantum Effect? In: Frontiers in Quantum Systems in Chemistry and Physics, edited by S. Wilson, P. J. Grout, J. Maruani, G. Delgado-Barrio and P. Piecuch, Springer Verlag, Vol. 18, 238–256 (2008).

    Google Scholar 

  31. E. J. Brändas, Organization of Particle Beams. A Possible New Cooling Concept, In Proceedings from the Workshop on Beam Cooling and Related Topics, Oct 4–8, 1993, edited by J. Bosser, CERN 94–03, 106–117 (1994).

    Google Scholar 

  32. P. W Anderson, The Resonating Valence Bond State in LaCuO and Superconductivity, Science 235 (4793), 1196–1198 (1987).

    Article  CAS  Google Scholar 

  33. P. W Anderson, The Theory of Superconductivity in the High-Tc -Cuprate Super-Conductors, (Princeton Series in Physics, edited by Sam B. Treiman, Princeton University Press, New Jersey, 1997).

    Google Scholar 

  34. J. Tahir-Kheli and W A. Goddard III, Chiral Plaquette Polaron Theory of Cuprate Super-Conductivity, Phys. Rev. B—Condens. Matter Mater. Phys. 76 (1), Art. no. 014514 (2007).

    Google Scholar 

  35. L. J. Dunne, E. J. Brändas, J. N. Murrell and V Coropceanu, Group Theoretical Identification of Active Localized Orbital Space in High-TC-Cuprate Superconductors, Solid State Commun. 108, 619–623 (1998).

    Article  CAS  Google Scholar 

  36. L. J. Dunne and E. J. Brändas, Two-Fluid Model of Superconducting Condensates and Spin Gaps in dx 2−y 2− Wave High Tc Cuprates from Repulsive Electronic Correlations, Int. J. Quant. Chem. 99, 798–804 (2004).

    Article  CAS  Google Scholar 

  37. E. Brändas and C. A. Chatzidimitriou-Dreismann, Coherence in Disordered Condensed Matter. V: Thermally Activated Quantum Correlations in High-TC Superconductivity, Ber. Bunsenges. Phys. Chem. 95, 462–466 (1991).

    Google Scholar 

  38. A. J. Coleman, Structure of Fermion Density Matrices, Rev. Mod. Phys. 35 (3), 668–686 (1963).

    Article  Google Scholar 

  39. Y J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, W N. Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl, S. R. Kreitzman, P. Mulhern, T. M. Riseman, D. L. Williams, B. X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A. W. Sleight, M. A. Subramanian, C. L. Chien, M. Z. Cieplak, G Xiao, V Y Lee, B. W Statt, C. E. Stronach, W J. Kossler and X. H. Yu, Universal Correlations Between T C and n s /m* (Carrier Density over Effective Mass) in High-T C Cuprate Superconductors, Phys. Rev. Lett. 2317–2321 (1989).

    Google Scholar 

  40. M. Svrc`ek, P. Ban`acký and A. Zajac, Nonadiabatic Theory of Electron-Vibrational Coupling: New Basis for Microscopic Interpretation of Superconductivity, Int. J. Quant. Chem. 393–414 (1992).

    Google Scholar 

  41. E. Karlsson, E. J. Brändas and C. A. Chatzidimitriou-Dreismann, The Interplay Between Universal Quantum Correlations and Specific Mechanisms, Involving Short-Lived Magnetic Clusters, in HTSC's, Physica Scripta. 44, 77–87 (1991).

    Article  CAS  Google Scholar 

  42. E. Brändas and C. H. Chatzidimitriou-Dreismann, On the Connection Between Certain Properties of the Second-Order Reduced Density Matrix and the Occurrence of Coherent-Dissipative Structures in Disordered Condensed Matter, Int. J. Quant. Chem. 40, 649–673 (1991).

    Article  Google Scholar 

  43. E. J. Brändas, Quantum Concepts and Complex Systems, Int. J. Quant. Chem. 98, 78–86 (2004).

    Article  Google Scholar 

  44. E. Brändas, P. Ban`acký and E. Karlsson, Nonadiabaticity and Off-Diagonal Long-Range Order in High-Temperature Superconductors, preprint (1992). Unpublished.

    Google Scholar 

  45. D. Wechsler and J. Ladik, Correlation-Corrected Energy Bands of YBa2Cu3O7: A Mutually Consistent Treatment, Phys. Rev. B: Condens Matter 55, 8544–8550 (1997).

    CAS  Google Scholar 

  46. E. Brändas and C. A. Chatzidimitriou-Dreismann, Creation of Long Range Order in Amorphous Condensed Systems, Lect. Notes Phy. 325, 486–540 (1989).

    Article  Google Scholar 

  47. C. A. Chatzidimitriou-Dreismann and E. J. Brändas, Coherence in Disordered Condensed Matter. IV: Conductivities of Molten Alkali Chlorides—A Novel Relation, Ber. Bunsenges. Phys. Chem. 93, 1065–1069 (1989).

    CAS  Google Scholar 

  48. C. A. Chatzidimitriou-Dreismann, Complex Scaling and Dynamical Processes in Amorphous Condensed Matter, Adv. Chem. Phys. 80, 201–314 (1991).

    Article  CAS  Google Scholar 

  49. R. Pfeifer and H. G. Hertz, Activation Energies of the Proton-Exchange Reactions in Water Measured with the 1H-NMR Spin-Echo Technique, Ber. Bunsenges. Phys. Chem. 94, 1349–1353 (1990).

    CAS  Google Scholar 

  50. H. Weingärtner and C. A. Chatzidimitriou-Dreismann, Anomalous H+ and D+ Conductance in H2O–D2O Mixtures, Nature, 346, 548–550 (1990).

    Article  Google Scholar 

  51. E. J. Brändas, Some Theoretical Problems in Chemistry and Physics, Int. J. Quant. Chem. 106, 2836–2839 (2006).

    Article  Google Scholar 

  52. I. P. Grant and H. M. Quiney, Application of Relativistic Theories and Quantum ElectroDynamics to Chemical Problems, Int. J. Quant. Chem. 80, 283–297 (2000).

    Article  CAS  Google Scholar 

  53. G. D. Birkoff, Relativity and Modern Physics (Cambridge University Press, Cambridge, 1921).

    Google Scholar 

  54. E. J. Brändas, Dissipative Systems and Microscopic Selforganization, Adv. Quant. Chem. 41, 121–138 (2002).

    Article  Google Scholar 

  55. E. J. Brändas, Complex Symmetric Forms and the Emergence of Jordan Blocks in Analytically Extended Quantum Theory, Int. J. Comp. Math. 86:2, 315–319 (2009).

    Article  Google Scholar 

  56. A. Bohm, M. Gadella, M. Loeve, S. Saxon, P. Patuleanu and C. Puntmann, Gamow-Jordan Vectors and Nonreducible Density Operators from Higher Order S-Matrix Poles, J. Math. Phys. 38, 6072–6100 (1997).

    Article  Google Scholar 

  57. J. Kumicák and E. Brändas, Complex Scaling and Lyapunov Converters, Int. J. Quant. Chem. 46, 391–399 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this paper

Cite this paper

Brändas, E.J. (2009). Complex Symmetry, Jordan Blocks and Microscopic Self-organization. In: Russo, N., Antonchenko, V.Y., Kryachko, E.S. (eds) SelfOrganization of Molecular Systems. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2590-6_4

Download citation

Publish with us

Policies and ethics