Skip to main content

The Thermocapillary, Marangoni, Convection Problem

  • Chapter
Convection in Fluids

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 90))

  • 1750 Accesses

It seems very judicious (at least from my point of view) to quote again some remarks about ‘the dynamics of thin liquid films’ from the preface of the recent special issue of Journal of Engineering Mathematics [1]: A detailed understanding of flows in thin liquid films is important for a wide range of modern engineering processes. This is particularly so in chemical and process engineering, where the liquid films are encountered in heat-and-mass-tranfer devices (e.g. distillation columns and spinning-disk reactors), and in coating processes (e.g. spin coating, blade coating, spray painting and rotational moulding). In order to design these processes for safe and efficient operation it is important to build mathematical models that can predict their performance, to have confidence in the predictions of the models, and to be able to use the models to optimize the design and operation of the devices involved. Thin liquid films also occur in a variety of biological contexts. On the other hand, when liquids flow in thin films, the interface (free surface) between the liquid and surrounding (passive!) gas can adopt a rich variety of interesting waveforms — these shapes are determined by a balance of the principle driving forces, usually including gravity, (temperature-dependent Marangoni phenomena) surface tension and viscous effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.G. Crowdy, C.J. Lawrence and S.K. Wilson (Guest-Editors), The Dynamics of Thin Liquid Films. Special issue of J. Engng. Math. 50(2–3), 95–341, November 2004.

    Google Scholar 

  2. H.-C. Chang, Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103–136, 1994.

    Article  Google Scholar 

  3. P. Colinet, J.C. Legros and M.G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities, 1st Edn. Wiley-VCH, 2001.

    Google Scholar 

  4. A.A. Nepomnyaschy, M.G. Velarde and P. Colinet, Interfacial Phenomena and Convection. Chapman & Hall/CRC, London, 2002.

    Google Scholar 

  5. M.G. Velarde and R.Kh. Zeytounian, Interfacial Phenomena and the Marangoni Effect. CISM Courses and Lectures, No. 428, CISM, Udine and Springer-Verlag, Wien/New York, 2002.

    MATH  Google Scholar 

  6. E. Guyon, J-P. Hulin and L. Petit, Hydrodynamique physique. Savoirs Actuels, InterEdi-tions/Editions du CNRS, Paris, Meudon, 1991.

    Google Scholar 

  7. E. Guyon, J-P. Hulin, L. Petit and C.D. Mitescu, Physical Hydrodynamics, Oxford University Press, Oxford, 2001.

    MATH  Google Scholar 

  8. R.Kh. Zeytounian, The Bénard–Marangoni thermocapillary-instability problem. Phys. Uspekhi 41, 241–267, 1988.

    Article  Google Scholar 

  9. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M.G. Velarde and R.Kh. Zeytouian, Thermo-capillary long waves in a liquid film fmow. Part 1. Low-dimensional formulation. J. Fluid Mech. 538, 199–222, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  10. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M.G. Velarde and R.Kh. Zeytouian, Thermo-capillary long waves in a liquid film fmow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech. 538, 223–244, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Modern Phys. 69(3), 931–980, 1997.

    Article  Google Scholar 

  12. S.J. VanHook and J.B. Swift, Phys. Rev. E 56(4), 4897–4898, October 1997.

    Article  Google Scholar 

  13. M.F. Schatz, S.J. VanHook, W.D. McCormick, J.B. Swift and H.L. Swinney, Phys. Rev. Lett. 75, 1938, 1995.

    Article  Google Scholar 

  14. D.J. Benney, Long waves on liquid films. J. Math. Phys. (N.Y.) 45, 150–155, 1966.

    MATH  MathSciNet  Google Scholar 

  15. P.M.J. Trevelyan and S. Kalliadasis, J. Engng. Math. 50(2–3), 177–208, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. Nakaya, Waves of a viscous fluid down a vertical wall. Phys. Fluids A1, 1143–1154, 1989.

    Google Scholar 

  17. B. Sheid, A. Oron, P. Colinet, U. Thiele and J.C. Legros, Phys. Fluids 14, 4130–4151, 2002. Erratum: Phys. Fluids 15, 583, 2003.

    Article  MathSciNet  Google Scholar 

  18. A. Pumir, P. Manneville and Y. Pomeau, J. Fluid Mech. 135, 27–50, 1983.

    Article  MATH  Google Scholar 

  19. P. Rosenau, A. Oron and J.M. Hyman, Phys. Fluids A4, 1102–1104, 1992.

    Google Scholar 

  20. A. Oron and O. Gottlieb, Subcritical and supercritical bifurcations of the first- and-second-order Benney equations. J. Engng. Math. 50(2–3), 121–140, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.-P. Lin, Finite amplitude side-band stability of a viscous film. J. Fluid Mech. 63, 417– 429, 1974.

    Article  MATH  Google Scholar 

  22. C. Ruyer-Quil and P. Manneville, Improved modeling of flows down inclined planes. Eur. Phys. J. B15, 357–369, 2000.

    Google Scholar 

  23. C. Ruyer-Quil and P. Manneville, Phys. Fluids 14, 170–183, 2002.

    Article  MathSciNet  Google Scholar 

  24. V.Ya. Shkadov, Wave flow regimes of a thin layer of viscous fluid subject to gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 2, 43–51, 1967 [English transl. in Fluid Dyn. 19, 29–34, 1967.

    Google Scholar 

  25. R.Kh. Zeytounian, Long-Waves on Thin Viscous Liquid Film/Derivation of Model Equations. Lecture Notes in Physics, Vol. 442, Springer-Verlag, Berlin/Heidelberg, pp. 153–162, 1995.

    Google Scholar 

  26. T. Ooshida, Phys. Fluids 11, 3247–3269, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. M.K.R. Panga and V. Balakotaiah, Phys. Rev. Lett. 90(15), 154501, 2003.

    Article  Google Scholar 

  28. C. Ruyer-Quil and P. Manneville, Phys. Rev. Lett. 93(19), 199401, 2004.

    Article  Google Scholar 

  29. S. Kalliadasis, A. Kiyashko and E.A. Demekhin, J. Fluid Mech. 475, 377–408, 2003.

    Article  MATH  Google Scholar 

  30. E.A. Demekhin, M. Kaplan and V.Ya Shkadov, Mathematical models of the theory of viscous liquid films. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 6, 73–81, 1987.

    Google Scholar 

  31. E.A. Demekhin and V.Ya Shkadov, Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 5, 21–27, 1984.

    Google Scholar 

  32. M. Takashima, J. Phys. Soc. Japan 50(8), 2745–2750 and 2751–2756, 1981.

    Article  Google Scholar 

  33. V.C. Regnier and G. Lebon, Q. J. Mech. Appl. Math. 48(1), 57–75, 1995.

    Article  MATH  Google Scholar 

  34. J.R.A. Pearson, On convection cells induced by surface tension. J. Fluid Mech. 4, 489– 500, 1958.

    Article  MATH  Google Scholar 

  35. D.A. Niels, Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19, 341–352, 1964.

    Article  MathSciNet  Google Scholar 

  36. P. Barthelet, F. Charry and J. Fabre, J. Fluid Mech. 303, 23, 1995.

    Article  Google Scholar 

  37. A.A. Golvin, A.A. Nepomnyaschy and L.M. Pismen, Phys. Fluids 6(1), 35–48, 1994.

    Google Scholar 

  38. D. Kashdan et al., Nonlinear waves and turbulence in Marangoni convection. Phys. Fluids 7(11), 2679–2685, 1995.

    Article  MathSciNet  Google Scholar 

  39. A. Oron and Ph. Rosenau, Formation of patterns induced by thermocapillarity and gravity. J. Phys. (France) II 2, 131–146, 1992.

    Article  Google Scholar 

  40. E. Erneux and S.H. Davis, Nonlinear rupture of free films. Phys. Fluids A5, 1117–1122, 1993.

    Google Scholar 

  41. S.H. Davis, Annu. Rev. Fluid Mech. 19, 403–435, 1987.

    Article  MATH  Google Scholar 

  42. H.-C. Chang, E.A. Demekhin and D. Kopelevitch, Nonlinear evolution of waves on a vertically falling fluid. J. Fluid Mech. 250, 433–480, 1993.

    Article  MathSciNet  Google Scholar 

  43. P.M. Parmentier, V.C. Regnier and G. Lebon, Phys. Rev. E 54(1), 411–423, 1996.

    Article  Google Scholar 

  44. P.C. Dauby and G. Lebon, J. Fluid Mech. 329, 25–64, 1996.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, B.V.

About this chapter

Cite this chapter

(2009). The Thermocapillary, Marangoni, Convection Problem. In: Convection in Fluids. Fluid Mechanics and its Applications, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2433-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2433-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2432-9

  • Online ISBN: 978-90-481-2433-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics