Skip to main content

Synthesis of Functionalized Mesoporous Silicas, Structure of Their Surface Layer and Sorption Properties

  • Chapter
  • First Online:
Nanomaterials and Supramolecular Structures

Abstract

The routes of synthesis of polysiloxane xerogels functionalized by nitrogen-, oxygen-, phosphorus- and sulphur content ligand groups were investigated. Applying a number of physical methods (SEM, TEM, AFM, IR and Raman spectroscopy, 1H, 13C, 29Si and 31P CP/MAS NMR spectroscopy, EPR spectroscopy, ERS and thermal analysis) the structure of xerogels and their surface was established. The influence of some factors on the structural-adsorption characteristics of such xerogels and their sorption properties were analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zub YuL, Parish RV (1996) Functionalized polysiloxane sorbent: preparation, structure, properties and use. Stud Surf Sci Catal 99: 285–299

    Article  CAS  Google Scholar 

  2. Melnyk IV, Dudarko OA, Stolyarchuk NV et al (2007) Polysiloxane xerogels with bifunctional surface layer. In: Shpak AP, Gorbyk PP (eds) Physico-chemistry of nanomaterials and supramolecular structures. Naukova Dumka, Kyiv

    Google Scholar 

  3. Zub YuL (2008) Design of functionalized polysiloxane adsorbents and their environmental applications. In: Innocenzi P, Zub YuL, Kessler VG (eds) Sol–gel methods for materials processing. Springer, Dordrecht

    Google Scholar 

  4. Slinyakova IB, Denisova TI (1988) Organo-silicon adsorbents: production, properties, and application (in Russ). Naukova Dumka, Kyiv

    Google Scholar 

  5. Voronkov MG, Vlasova NN, Pozhidaev YuN (2000) Organosilicon ion-exchange and complexing adsorbents. Appl Organometal Chem 14: 287–303

    Article  CAS  Google Scholar 

  6. Chuiko AA, Pavlik GYe, Budkevich GB et al (1966) A method of preparation of silica gels containing aminoalkyl groups (in Russ). USSR Certificate of Authorship No 182719

    Google Scholar 

  7. Zub YuL, Gorochovatskaya MYa, Chuiko AA et al (1992) Polysiloxane matrices with functional groups as a basis of new sorbents. Ext Abstr Fourth Int Conf ‘Fundamentals of Adsorption’ (Kyoto, Japan) 461–463

    Google Scholar 

  8. Stechenko OV, Yurchenko GR, Matkovskii OK et al (2000) Adsorption properties of some polyaminosiloxanes. Sci Reports of Uzhgorod Univ (Ser ‘Chemistry’, in Ukrainian) 107–112

    Google Scholar 

  9. Matkovskii OK, Yurchenko GR, Stechenko OV et al (2000) Influence of solvent nature on structure-adsorption characteristics of poly(3-aminopropyl)siloxane. Sci Reports of Ternopil Univ (Ser ‘Chemistry’, in Ukrainian) 40–45

    Google Scholar 

  10. Zub YuL, Chuiko AA (2006) Salient features of synthesis and structure of surface of functionalized polysiloxane xerogels. In: Bergna HE, Roberts WO (eds) Colloidal silica: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  11. Zub YuL, Melnyk IV, Stolyarchuk NV et al (2006) Synthesis of functionalized polysiloxane xerogels, structure of their surface layer and sorption properties. Chem Phys Technol Surf (in Russ) 11–12: 165–203

    Google Scholar 

  12. Zub YuL, Drozd LS, Chuiko AA (1993) Factors influencing the porous structure of polyorganosiloxanes. Abstr IUPAC Symp ‘Characterization of Porous Solids’ (Marseille, France) 95

    Google Scholar 

  13. Stechenko OV, Zub YuL, Parish RV (1998) Polyaminosiloxane adsorbents: preparation and properties. Proc 3rd Int Symp ‘Effects of Surf Heterogeneity in Adsorp and Catal on Solids’ (Torun, Poland) 231–232

    Google Scholar 

  14. Zub YuL, Chuiko AA, Stechenko OV (2002) Synthesis, structure and structure-adsorption characteristics of some polyamonisiloxanes. Reports of NAS of Ukraine (in Russ) 150–155

    Google Scholar 

  15. Zub YuL, Chuiko AA, Stolyarchuk NV et al (2005) New amine-containing adsorbents on the basis of bridged polysilsesquioxanes. Reports of NAS of Ukraine (in Russ) 117–122

    Google Scholar 

  16. Dabrowski A, Barczak M, Stolyarchuk (Shvaykovska) NV et al (2005) Bridged polysilsesquioxane xerogels functionalizated by amine- and thiol-groups: synthesis, structure, adsorption properties. Adsorption 11: 501–517

    Article  CAS  Google Scholar 

  17. Zub YuL, Melnyk IV, Chuiko AA et al (2002) Design of functionalized polysiloxanes: synthesis and investigation of sulfur-containing xerogels with mono- and bifunctional surface layer. Chem Phys Technol Surf 7: 35–45

    Google Scholar 

  18. Gona OІ, Melnyk IV, Zub YuL (2006) New mesoporous adsorption materials with ≡Si(CH2)3NHC(S)NHC2H5 functional group in surface layer. Chem Phys Technol Surf (in Russ) 13: 87–98

    Google Scholar 

  19. Melnyk IV, Stolyarchuk NV, Zub YuL et al (2006) Polysiloxane xerogels containing arch-fixed urea groups. J Appl Chem (in Russ) 79: 992–997

    Google Scholar 

  20. Yang JJ, El-Nahhal IM, Maciel GE (1996) Synthesis and solid-state NMR structural characterization of some functionalized polysiloxanes. J Non-Cryst Solids 204: 105–117

    Article  CAS  Google Scholar 

  21. Parish RV, Habibi D, Mohammadi V (1989) Insoluble ligands and their applications II. Polysiloxane-phosphine ligands, their complexes, and hydrogenation catalysts. J Organometal Chem 369: 17–28

    Article  CAS  Google Scholar 

  22. Melnyk (Seredyuk) IV, Zub YuL, Chuiko AA et al (2002) Novel polyorganosiloxane xerogels with a bifunctional ≡Si(CH2)3SH/≡Si(CH2)3NH2surface layer. Chem Phys Technol Surf 8: 125–133

    Google Scholar 

  23. Dobryanska HI, Melnyk IV, Zub YuL et al (2006) The influence of the Si(OC2H5)4/ (CH3O)3Si(CH2)3SH ratio on the structure-adsorption characteristics of xerogels formed and accessibility of functional groups in their surface layers. J Phys Chem (in Russ) 80: 1071–1077

    Google Scholar 

  24. Zub YuL, Stolyarchuk NV, Melnyk IV et al (2005) New adsorbents based on bridged polysilsesquioxanes containing 3-mercaptopropyl functional groups. Mendeleev Commun 15: 168–170

    Article  Google Scholar 

  25. Stolyarchuk NV, Melnyk IV, Zub YuL et al (2009) Bridge polysilsesquioxane xerogels with a bifunctional surface layer of the ≡Si(CH2)3NH2/≡Si(CH2)3SH composition. Protect Metals Phys Chem Surf 45: 183–190

    Google Scholar 

  26. Dobryanskaya GI, Zub YuL, Barczak M et al (2006) Synthesis and structure-related adsorption characteristics of bifunctional polysiloxane xerogels with methyl and 3-mercaptopropyl groups. Colloid J (in Russ) 68: 548–557

    CAS  Google Scholar 

  27. Dobryanskaya GI, Melnyk IV, Zub YuL et al (2007) Porous xerogels with bifunctional surface layer of ≡Si(CH2)3SH/≡Si(CH2)2CH3 composition. J Phys Chem (in Russ) 81: 410–417

    Google Scholar 

  28. Chuiko AA, Pavlik GYe, Neimark IYe (1964) Method of preparation of organosilica gel. USSR Certificate of Authorship No 164680

    Google Scholar 

  29. Yashina NI, Zub YuL, Chuiko AA (1998) The synthesis of polyorganosiloxanes with the carboxyl groups on their surface. Abstr 3rd Polish-Ukrainian Symp ‘Theor Experim Stud Interfacial Phenomena and Their Technol Application’ (Lviv, Ukraine) 77

    Google Scholar 

  30. Prybora NA, Dzyubenko LS, Zub YuL et al (1999) Synthesis of the polysiloxane containing butyric acid residue on its surface layer. Collected Sci Papers of Nation Training Dragomanov Univ (Chem Sci, in Ukrainian) 41–47

    Google Scholar 

  31. Prybora NA, Zub YuL, Chuiko AA et al (2001) Synthesis and properties of some polycarboxylsiloxane sorbents. Abstr 2nd Int Conf on Silica Sci and Technol (Mulhouse, France) 171

    Google Scholar 

  32. Dudarko OA, Melnyk IV, Zub YuL et al (2005) Synthesis of polysiloxane xerogels using teraethoxysilane/(diethylphosphoneethyl)triethoxysilane system. Colloid J (in Russ) 67: 753–758

    Google Scholar 

  33. Dabrowski A, Barczak M, Dudarko OA et al (2007) Preparation and characterization of polysiloxane xerogels having covalently attached phosphonic groups. Polish J Chem 81: 475–483

    CAS  Google Scholar 

  34. Dudarko OA, Zub YuL, Semenii VYa et al (2007) The preparation of polysiloxane xerogels containing amide derivatives of phosphonic and thiophosphonic acids in the surface layer. Colloid J (in Russ) 69: 72–80

    Google Scholar 

  35. Dudarko OA, Zub YuL, Dabrowski A et al (2008) Polysiloxane xerogels with a bifunctional surface layer containing O/N, O/S, S/N and S/S donor centres. J. Appl Chem (in Russ) 81: 118–126

    Google Scholar 

  36. Kuchma OV, Zub YuL, Ryabov SV et al (2006) Hybrid organic–inorganic materials on a base of α- and β-cyclodextrins derivatives obtaining sol–gel method. Polym J (in Russ)28: 147–154

    CAS  Google Scholar 

  37. Kuchma OV, Zub YuL, Dabrowski A (2006) New sorption materials based on polysiloxane xerogels with incorporated calix[4]arene: synthesis and structure. Colloid J (in Russ) 68: 792–799

    Google Scholar 

  38. Kuchma OV, Zub YuL (2007) Hybrid polysiloxane matrixes with supramolecular surface layer: synthesis, structure, and properties. In: Shpak AP, Gorbyk PP (eds) Physico-chemistry of nanomaterials and supramolecular structures (in Russ). Naukova Dumka, Kyiv

    Google Scholar 

  39. Kuchma OV, Zub YuL (2006) Experimental approach to the synthesis of hybrid adsorbents on the basis of polysiloxane xerogels functionalized with calix[4]arenes and their derivatives. In: Loureiro JM, Kartel MT (eds) Combined and hybrid adsorbents: fundamental and applications. Springer, Dordrecht

    Google Scholar 

  40. Finn LP, Slinyakova IB (1975) Structure and thermodestruction of polyorganosiloxane xerogels using IR spectroscopy data. Colloid J (in Russ) 37: 723–729

    CAS  Google Scholar 

  41. Lin-Vien D, Colthup NB, Fateley WG et al (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, San Diego

    Google Scholar 

  42. Li L, Liu X, Ge Y et al (1991) Interaction and pillaring of zirconium bis(monohydrogen-phosphate) with NH2(CH2)3Si(OC2H5)3. J Phys Chem 95: 5910–5914

    Article  CAS  Google Scholar 

  43. Okabayashi H, Izawa K, Yamamoto T et al (2002) Surface structure of silica gel reacted with 3-mercaptopropyltriethoxysilane and 3-aminopropyltriethoxysilane: formation of the S-S bridge structure and its characterization by Raman scattering and diffuse reflectance Fourier transform spectroscopic studies. Colloid Polym Sci 280: 135–145

    Article  CAS  Google Scholar 

  44. Shimizu I, Okabayashi H, Hattori N et al (1997) 13C- and 1H-NMR and FTIR spectroscopic evidence for aggregate formation of organosilanes in toluene. Colloid Polym Sci 275: 293–297

    Article  CAS  Google Scholar 

  45. Dudarko OA, Zub YuL, Jaroniec M (2009) The sol–gel method for preparation of polysiloxane xerogels containing carboxylic functionality. Chem Phys Technol Surf 15 (in press)

    Google Scholar 

  46. Caravajal GS, Leyden DE, Qquinting GR et al (1988) Structural characterization of (3-aminopropyl) triethoxysilane-modified silicas by silicon-29 and carbon-13 nuclear magnetic resonance. Anal Chem 60: 1776–1786

    Article  CAS  Google Scholar 

  47. Melnyk IV (2002) Synthesis and investigation of polyorganosiloxanes with bi- and trifunctional surface layer (Thesis for PhD Degree, in Ukrainian). ISC of NAS of Ukraine, Kyiv

    Google Scholar 

  48. Trofimchuk AK, Kuzovenko VA, Melnyk IV et al (2006) Comparison of complexing ability of bifunctional polysiloxane xerogels and chemical modified silica gels. J Appl Chem (in Russ) 79: 230–236

    Google Scholar 

  49. Zub YuL, Melnyk IV, White MG et al (2008) Structural features of surface layers of bifunctional polysiloxane xerogels containing 3-aminopropyl groups and 3-mercaptopropyl groups. Adsorp Sci Technol 26: 119–133

    Article  CAS  Google Scholar 

  50. Stolyarchuk NV, Melnyk IV, Dobryanskaya GI et al (2007) A magic angle spinning NMR study of xerogels with functionalized by 3-mercaptopropyl groups. J Phys Chem (in Russ) 81: 1070–1075

    Google Scholar 

  51. Maciel GE (1998) NMR characterization of functionalized polysiloxanes. In: Ando I, Asakura T (eds) Solid state NMR of polymers. Elsevier, Amsterdam

    Google Scholar 

  52. Dudarko OA, Melnyk IV, Zub YuL (2006) Template synthesis of mesoporous silicas containing phosphonic acid derivatives in their surface layer. Inorg Mater (in Russ) 42: 413–420

    Google Scholar 

  53. Cardenas A, Hovnanian N, Smaihi M (1996). Sol–gel formation of heteropolysiloxanes from diethylphosphatoethyltriethoxysilane and tetraethoxysilane. J Appl Polym Sci 60: 2279–2288

    Article  CAS  Google Scholar 

  54. Aliev A, Ou DL, Ormsby B et al (2000) Porous silica and polysilsesquioxane with covalently linked phosphonates and phosphonic acids. J Mater Chem 10: 2758–2764

    Article  CAS  Google Scholar 

  55. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  56. Stechenko OV, Yakubovich TM, Teslenko VV et al (1997) Study of copper(II) absorption by some polyaminosiloxanes from the acetonitrile solutions. Chem Phys Technol Surf (in Ukrainian) 2: 62–67

    Google Scholar 

  57. Stechenko YeV, Yakubovich TN, Teslenko VV et al (1999) Copper(II) adsorption from acetonitrile solutions by nitrogencontaining polysiloxanes. Chem Phys Technol Surf (in Russ) 3: 46–50

    Google Scholar 

  58. Stechenko OV, Yakubovich TN, Teslenko VV et al (2003) Copper(II) ions adsorption from acetonitrile solutions by polyaminosiloxane xerogel with bifunctional surface layer. Ukr Chem J (in Russ) 69: 19–24

    CAS  Google Scholar 

  59. Stolyarchuk NV, Melnyk IV, Zub YuL et al (2006) Copper(II) adsorption from acetonitryl solutions by aminocontaining bridged polysilsesquioxane xerogels. Reports of Donestk Univ (in Ukrainian) A: 283–288

    Google Scholar 

  60. Shvaikovska NV, Melnyk IV, Yurchenko GR et al (2004) Synthesis and structure–adsorption characteristics of bridged polysilsesquioxanes with aminopropyl groups. Chem Phys Technol Surf (in Russ) 10: 80–84

    CAS  Google Scholar 

  61. Melnyk IV, Demchenko VYa, Zub YuL et al (2003) Sorption of aurum(III) using polysiloxane xerogels functionalized with thiourea groups. Chem Phys Technol Surf (in Ukrainian) 9: 31–36

    Google Scholar 

  62. Khatib IS, Parish RV (1989) Insoluble ligands and their application. I. A comparison of silica-immobilized ligands and functionalized polysiloxanes. J Organometal Chem 369: 9–16

    Article  CAS  Google Scholar 

  63. El-Nahhal IM, Parish RV (1993) Insoluble ligands and their applications III. Polysiloxane diaminoethane derivatives. J Organometal Chem 452: 19–22

    Article  CAS  Google Scholar 

  64. Ahmed I, Parish RV (1993) Insoluble ligands and their applications IV. Polysiloxane-bis(2-aminoethyl)amine ligands and some derivatives. J Organometal Chem 452: 23–28

    Article  CAS  Google Scholar 

  65. El-Nahhal IM, Chehimi MM, Cordier C et al (2000) XPS, NMR and FTIR structural characterization of polysiloxane-immobilized amine ligand system. J Non-Cryst Solids 275: 142–146

    Article  CAS  Google Scholar 

  66. Dobryanskaya GI, Goncharik VP, Kozhara LI et al (2009) Complex formation involving Hg2+ ions on the surface of the polysiloxane xerogels functionalized by 3-mercaptoprophl groups. Coord Chem (in Russ) 35: 264–271

    Google Scholar 

  67. Stolyarchuk NV, Melnyk IV, Zub YuL (2006) Ag(I) cations sorption by thiolcontaining bridged polysilsesquioxane xerogels. Proc X Int Conf ‘Theoretical Problems of Surface Chemistry, Adsorption and Chromatography’ (in Russ) 236–241

    Google Scholar 

  68. Melnyk IV, Zub YuL, Veron E et al (2008) Spray-dried mesoporous silica microspheres with adjustable textures and pore surface homogenously covered by accessible thiol functions. J Mater Chem 18: 1368–1382

    Article  CAS  Google Scholar 

  69. Dudarko OA, Goncharyk VP, Semenii VYa et al (2008) Sorption of Hg2+, Nd3+, Dy3+, and UO2 2+ ions at polysiloxane xerogels functionalized with phosphonic acid derivatives. Protect Metals 44: 207–212

    Google Scholar 

  70. Dudarko OA, Yurchenko GR, Matkovskii OK et al (2007) Adsorption properties of polysiloxane xerogels containing residues of phosphonic acid in their surface layer. Reports of Donestk Univ (in Ukrainian) A: 221–224

    Google Scholar 

  71. Ilchenko NN, Kuchma OV, Zub YuL et al (2007) Cesium cation complexation by 25,27-dihydroxycalix[4]arene-crown-6: computational study. THEOCHEM 815: 83–86

    Article  CAS  Google Scholar 

  72. Dai S (2001) Hierarchically imprinted sorbents. Chem Eur J 7: 763–768

    Article  CAS  Google Scholar 

  73. Collinson MM (1998) Analytical applications of organically modified silicates. Mikrochim Acta 129: 149–165

    Article  CAS  Google Scholar 

  74. Pozhidaev YuN (2004) Carbofunctional polyalkylsilsesquioxanes with ion-exchange and complexing properties (Thesis for DSc Degree, in Russ). IrIC, SB of RAN, Irkutsk

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the partial financial support of NATO (Grant SfP–978006) and the Ministry of Education and Science of Ukraine for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy L. Zub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zub, Y.L. (2009). Synthesis of Functionalized Mesoporous Silicas, Structure of Their Surface Layer and Sorption Properties. In: Shpak, A., Gorbyk, P. (eds) Nanomaterials and Supramolecular Structures. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2309-4_14

Download citation

Publish with us

Policies and ethics