Skip to main content

Synthesis and Properties of Magnetosensitive Nanocomposites Based on Iron Oxide Deposited on Fumed Silica

  • Chapter
  • First Online:
Nanomaterials and Supramolecular Structures

Abstract

A synthesis technique of magnetosensitive nanocomposites was proposed on the basis of nanocrystalline magnetite (Fe3O4) or maghemite (γ-Fe2O3) and highly disperse silica. Thermogravimetry, differential thermal analysis, XRD, and a vibrating magnetometer were used to characterize prepared nanocomposites. It was found that nanosilica prevents growth of Fe3O4 nanocrystallites stabilized at average sizes of 5–8 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorbyk PP, Petranovskaya AL, Storozhuk LP et al (2006) Medico-biological nanocomposites based on magnetite: synthesis, modification, surface functionalization for application in vitro. Chem Phys Technol Surf 11–12:374–396

    Google Scholar 

  2. Duguet E, Vasseur S, Mornet S (2006) Magnetic nanoparticles and their applications in medicine. Nanomedicine 1:157–168

    Article  CAS  Google Scholar 

  3. Mornet S, Vasseur S, Grasset F (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  4. Kotov EP, Rudenko MI (1990) Carriers for magnetic records. Radio i svyaz, Moscow

    Google Scholar 

  5. Kirschvink JL, Walker MM, Deibel C (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11:462–467

    Article  CAS  Google Scholar 

  6. Sun S, Zeng H, Robinson DB (2004) Monodispersed MFe2O4(M=Fe, Co, Mn) Nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

  7. Vasilevsky YA (1989) Carriers for magnetic records. Iscusstvo, Moscow

    Google Scholar 

  8. Del Monte F, Morales MP, Levy D (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3624

    Google Scholar 

  9. Popovici M, Gich M, Savii C (2006) Ultra-light sol–gel derived magnetic nanostructured materials. Roman Rep Phys 58:369–378

    CAS  Google Scholar 

  10. Cannas C, Gatteschi D, Musinu A (1998) Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J Phys Chem B 102:7721–7726

    Article  CAS  Google Scholar 

  11. Xu J, Thompson S, O’Keefe E (2004) Iron oxide-silica nanocomposites via sol–gel processing. J Mater Lett 58:1696–1700

    Article  CAS  Google Scholar 

  12. Raileanu M, Crisan M, Petrache C (2005) Sol–gel FexOy nanocomposites. Roman J Phys 50:595–606

    CAS  Google Scholar 

  13. Cannas C, Concas G, Gatteschi D (2001) Superparamagnetic behaviour of γ-Fe2O3 nanoparticles dispersed in a silica matrix. Phys Chem Chem Phys 3:832–838

    Article  CAS  Google Scholar 

  14. Battishaa IK, Afifya HH, Ibrahimb M (2006) Synthesis of Fe2O3 concentrations and sintering temperature on FTIR and magnetic susceptibility measured from 4 to 300 K of monolith silica gel prepared by sol–gel technique. J Magn Magn Mater 306:211–217

    Article  Google Scholar 

  15. Bogatyrev VM, Gaeva MV, Chuiko AA (2006) IR spectral study of thermooxidation destruction of trimethylsilylated silica modified by acetylacetonate of Fe(III). Chem Phys Technol Surf 11–12:254–260

    Google Scholar 

  16. Sviridov VV (1987) Chemical precipitation of metals from aqueous solutions. Belarus, Minsk

    Google Scholar 

  17. Sviridov VV (1996) Inorganic synthesis. Belarus, Minsk

    Google Scholar 

  18. Oranska EI, Gornikov YI, Fesenko TV (1994) Automated method of determination of average sizes of crystallites of polycrystalline solids. Zavodsk Lab 60(1):28

    Google Scholar 

  19. Spak AP, Kunitsky YA, Zakharchenko MI, Voloschenko AS (2003) Magnetism of amorphous and nanocrystalline systems. Naukova Dumka, Kiev

    Google Scholar 

  20. Yang J, Ferreira JMF (1998) Inhibitory effect of the Al2O3–SiO2 mixed additives on the anatase–rutile phase transformation. Mater Lett 36:320–324

    Article  CAS  Google Scholar 

  21. Gun’ko VM, Zarko VI, Turov VV et al (1998) CVD-titania on fumed silica substrate. J Colloid Interface Sci 198:141–156

    Article  Google Scholar 

  22. Cannas C, Concas G, Gatteschi D et al (2002) How to tailor maghemite particle size in γ-Fe2O3–SiO2 nanocomposites. J Mater Chem 12:3141–3146

    Article  CAS  Google Scholar 

  23. Gun’ko VM, Zarko VI, Leboda R et al (2001) Aqueous suspensions of fumed oxides: Particle size distribution and zeta potential. Adv Colloid Interface Sci 91:1–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.V. Borysenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bogatyrov, V., Borysenko, M., Dubrovin, I., Abramov, M., Galaburda, M., Gorbyk, P. (2009). Synthesis and Properties of Magnetosensitive Nanocomposites Based on Iron Oxide Deposited on Fumed Silica. In: Shpak, A., Gorbyk, P. (eds) Nanomaterials and Supramolecular Structures. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2309-4_12

Download citation

Publish with us

Policies and ethics