Skip to main content

Defeating Randomness – Targeted Integration as a Boost for Biotechnology

  • Chapter
  • First Online:
Cell Line Development

Part of the book series: Cell Engineering ((CEEN,volume 6))

Abstract

Genetic modification of mammalian cells is a prerequisite for the production of recombinant proteins, virus like particles, and viruses. For most applications long-term stability of such modifications is needed. Apart from episomal approaches which have not yet been sufficiently explored, integration of transgenes into the chromosomal DNA of the host cell is regarded to be the method of choice. Due to strong influences of the chromosomal surroundings on the expression of transgenes, targeted integration has obvious advantages over classical random integration procedures. Site directed integration leads to predictable expression properties, circumvents screening, is fast and provides high safety and is therefore advantageous for the integration of transgenes. In this chapter recombinase mediated cassette exchange (RMCE) using heterologous recombinases is described as an efficient and reliable method to target (integrate and replace) transgenes by site directed engineering of defined chromosomal sites for recombinant protein and virus expression. This technique, however, requires that the site of interest has been tagged before by specific sequence motifs. Thus, the chapter highlights current and forthcoming methods to (find and) tag chromosomal sites in order to make RMCE possible. This includes screening of randomly integrated reporters and spontaneous or Zinc Finger Nuclease enhanced homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akopian A, He J, Boocock MR, Stark WM (2003) Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A 100(15):8688–8691

    PubMed  CAS  Google Scholar 

  • Akopian, A., Marshall Stark, W. (2005) Site-specific DNA recombinases as instruments for genomic surgery. Adv Genet 55:1–23

    PubMed  CAS  Google Scholar 

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7(4):649–659

    PubMed  CAS  Google Scholar 

  • Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF 3rd, Segal DJ, Weitzman MD, Cathomen T (2005) Custom zinc-finger nucleases for use in human cells. Mol Ther 12(4):610–617

    PubMed  CAS  Google Scholar 

  • Andrews BJ, Proteau GA, Beatty LG, Sadowski PD (1985) The FLP recombinase of the 2 micron circle DNA of yeast: interaction with its target sequences. Cell 40(4):795–803

    PubMed  CAS  Google Scholar 

  • Araki K, Araki M, Yamamura K (2006) Negative selection with the Diphtheria toxin A fragment gene improves frequency of Cre-mediated cassette exchange in ES cells. J Biochem (Tokyo) 140(6):793–798

    CAS  Google Scholar 

  • Artelt P, Grannemann R, Stocking C, Friel J, Bartsch J, Hauser H (1991) The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99(2):249–254

    PubMed  CAS  Google Scholar 

  • Baer A, Bode J (2001) Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr Opin Biotechnol 12(5):473–480

    PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (1999) Stopped at the border: boundaries and insulators. Curr Opin Genet Dev 9(2):191–198

    PubMed  CAS  Google Scholar 

  • Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Site-specific cassette exchange and germline transmission with mouse ES cells expressing phiC31 integrase. Nat Biotechnol 21(3):321–324

    PubMed  CAS  Google Scholar 

  • Bethke B, Sauer B (1997) Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res 25(14):2828–2834

    PubMed  CAS  Google Scholar 

  • Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172(4):2391–2403

    PubMed  CAS  Google Scholar 

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161(3):1169–1175

    PubMed  CAS  Google Scholar 

  • Bode J, Schlake T, Rios-Ramirez M, Mielke C, Stengert M, Kay V, Klehr-Wirth D (1995) Scaffold/matrix-attached regions: structural properties creating transcriptionally active loci. Int Rev Cytol 162A:389–454

    PubMed  CAS  Google Scholar 

  • Branda CS, Dymecki SM (2004) Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6(1):7–28

    PubMed  CAS  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16(7):657–662

    PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL et al (2000a) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672

    PubMed  CAS  Google Scholar 

  • Cavazzana-Calvo M, Hacein-Bey S, de Saint-Basile G, Le Deist F, Fischer A (2000b) Gene therapy of severe combined immunodeficiencies. Transfus Clin Biol 7(3):259–260

    PubMed  CAS  Google Scholar 

  • Chung JH, Whiteley M, Felsenfeld G (1993) A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74(3):505–514

    PubMed  CAS  Google Scholar 

  • Cobellis G, Nicolaus G, Iovino M, Romito A, Marra E, Barbarisi M, Sardiello M, Di Giorgio FP, Iovino N, Zollo M et al (2005) Tagging genes with cassette-exchange sites. Nucleic Acids Res 33(4):e44

    PubMed  Google Scholar 

  • Coroadinha AS, Schucht R, Gama-Norton L, Wirth D, Hauser H, Carrondo MJ (2006) The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J Biotechnol 124(2):457–468

    PubMed  CAS  Google Scholar 

  • Cosset FL, Morling FJ, Takeuchi Y, Weiss RA, Collins MK, Russell SJ (1995a) Retroviral retargeting by envelopes expressing an N-terminal binding domain. J Virol 69(10):6314–6322.

    PubMed  CAS  Google Scholar 

  • Cosset FL, Takeuchi Y, Battini JL, Weiss RA, Collins MK (1995b) High-titer packaging cells producing recombinant retroviruses resistant to human serum. J Virol 69(12):7430–7436.

    PubMed  CAS  Google Scholar 

  • Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8(24):1323–1326

    PubMed  CAS  Google Scholar 

  • Danos O and Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 85(17):6460–6464.

    PubMed  CAS  Google Scholar 

  • Davis JL, Witt RM, Gross PR, Hokanson CA, Jungles S, Cohen LK, Danos O, Spratt SK (1997) Retroviral particles produced from a stable human-derived packaging cell line transduce target cells with very high efficiencies. Hum Gene Ther 8(12):1459–1467.

    PubMed  CAS  Google Scholar 

  • Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708

    PubMed  CAS  Google Scholar 

  • Dymecki SM (1996) A modular set of Flp, FRT and lacZ fusion vectors for manipulating genes by site-specific recombination. Gene 171(2):197–201

    PubMed  CAS  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17(11):1077–1094

    PubMed  CAS  Google Scholar 

  • Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. Proc Natl Acad Sci U S A 97(16):9150–9155

    PubMed  CAS  Google Scholar 

  • Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93(20):10887–10890

    PubMed  CAS  Google Scholar 

  • Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237(3):752–757

    PubMed  CAS  Google Scholar 

  • Festenstein R, Tolaini M, Corbella P, Mamalaki C, Parrington J, Fox M, Miliou A, Jones M, Kioussis D (1996) Locus control region function and heterochromatin-induced position effect variegation. Science 271(5252):1123–1125

    PubMed  CAS  Google Scholar 

  • Finer MH, Dull TJ, Qin L, Farson D, Roberts MR (1994) kat: a high-efficiency retroviral transduction system for primary human T lymphocytes. Blood 83(1):43–50.

    PubMed  CAS  Google Scholar 

  • Galla M, Will E, Kraunus J, Chen L, Baum C (2004) Retroviral pseudotransduction for targeted cell manipulation. Mol Cell 16(2):309–315

    PubMed  CAS  Google Scholar 

  • Girod PA, Nguyen DQ, Calabrese D, Puttini S, Grandjean M, Martinet D, Regamey A, Saugy D, Beckmann JS, Bucher P et al (2007) Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods 4(9):747–753

    PubMed  CAS  Google Scholar 

  • Glaser S, Anastassiadis K, Stewart AF (2005) Current issues in mouse genome engineering. Nat Genet 37(11):1187–1193

    PubMed  CAS  Google Scholar 

  • Goetze S, Baer A, Winkelmann S, Nehlsen K, Seibler J, Maass K, Bode J (2005) Performance of genomic bordering elements at predefined genomic loci. Mol Cell Biol 25(6):2260–2272

    PubMed  CAS  Google Scholar 

  • Gordley RM, Smith JD, Graslund T, Barbas CF 3rd (2007) Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol 367(3):802–813

    PubMed  CAS  Google Scholar 

  • Grez M (2006) Breakthrough in gene therapy? Interview by Friederike Klein. MMW Fortschr Med 148(17):16

    PubMed  Google Scholar 

  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51(6):975–985

    PubMed  CAS  Google Scholar 

  • Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97(11):5995–6000

    PubMed  CAS  Google Scholar 

  • Hauser H, Spitzer D, Verhoeyen E, Unsinger J, Wirth D (2000) New approaches towards ex vivo and in vivo gene therapy. Cells Tissues Organs 167(2–3):75–80

    PubMed  CAS  Google Scholar 

  • Hoess RH, Ziese M, Sternberg N (1982) P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A 79(11):3398–3402

    PubMed  CAS  Google Scholar 

  • Hoess RH, Wierzbicki A, Abremski K (1986) The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res 14(5):2287–2300

    PubMed  CAS  Google Scholar 

  • Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF (2007) An efficient and targeted gene integration system for high-level antibody expression. J Immunol Methods 322(1–2):28–39

    PubMed  CAS  Google Scholar 

  • Hunter NL, Awatramani RB, Farley FW, Dymecki SM (2005) Ligand-activated Flpe for temporally regulated gene modifications. Genesis 41(3):99–109

    PubMed  CAS  Google Scholar 

  • Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M (2003) Continuous high-titer HIV-1 vector production. Nat Biotechnol 21(5):569–572.

    PubMed  CAS  Google Scholar 

  • Izumi M, Gilbert DM (1999) Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 76(2):280–289

    PubMed  CAS  Google Scholar 

  • Jullien N, Sampieri F, Enjalbert A, Herman JP (2003) Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res 31(21):e131

    PubMed  Google Scholar 

  • Jullien N, Goddard I, Selmi-Ruby S, Fina JL, Cremer H, Herman JP (2007) Conditional transgenesis using Dimerizable Cre (DiCre). PLoS ONE 2(12):e1355

    PubMed  Google Scholar 

  • Jun SC, Kim MS, Hong HJ, Lee GM (2006) Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Biotechnol Prog 22(3):770–780

    PubMed  CAS  Google Scholar 

  • Keravala A, Calos MP (2008) Site-specific chromosomal integration mediated by phiC31 integrase. Methods Mol Biol 435:165–173

    PubMed  CAS  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    PubMed  CAS  Google Scholar 

  • Kim SJ, Kim NS, Ryu CJ, Hong HJ, Lee GM (1998) Characterization of chimeric antibody producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng 58(1):73–84

    PubMed  CAS  Google Scholar 

  • Kim NS, Byun TH, Lee GM (2001) Key determinants in the occurrence of clonal variation in humanized antibody expression of cho cells during dihydrofolate reductase mediated gene amplification. Biotechnol Prog 17(1):69–75

    PubMed  Google Scholar 

  • Kingston RE, Kaufman RJ, Bebbington CR, Rolfe MR (2002) Amplification using CHO cell expression vectors. Current Protocols Mol Biol/edited by Frederick M Ausubel et al Chapter 16: Unit 16 23.

    Google Scholar 

  • Kito M, Itami S, Fukano Y, Yamana K, Shibui T (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol 60(4):442–448

    PubMed  CAS  Google Scholar 

  • Klehr-Wirth D, Kuhnert F, Unsinger J, Hauser H (1997) Generation of mammalian cells with conditional expression of cre recombinase. Trends Genetics TTO T40067 (http://tto.trendscom).

  • Koch KS, Aoki T, Wang Y, Atkinson AE, Gleiberman AS, Glebov OK, Leffert HL (2000) Site-specific integration of targeted DNA into animal cell genomes. Gene 249(1–2):135–144

    PubMed  CAS  Google Scholar 

  • Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24(3):137–142

    PubMed  CAS  Google Scholar 

  • Kwaks TH, Barnett P, Hemrika W, Siersma T, Sewalt RG, Satijn DP, Brons JF, van Blokland R, Kwakman P, Kruckeberg AL et al (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21(5):553–558

    PubMed  CAS  Google Scholar 

  • Lakso M, Sauer B, Mosinger B Jr, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in transgenic mice. Proc Natl Acad Sci U S A 89(14):6232–6236

    PubMed  CAS  Google Scholar 

  • Landau NR, Littman DR (1992) Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol 66(8):5110–5113

    CAS  Google Scholar 

  • Langer SJ, Ghafoori AP, Byrd M, Leinwand L (2002) A genetic screen identifies novel non-compatible loxP sites. Nucleic Acids Res 30(14):3067–3077

    PubMed  CAS  Google Scholar 

  • Lee G, Saito I (1998) Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216(1):55–65

    PubMed  CAS  Google Scholar 

  • Liu Q, Segal DJ, Ghiara JB, Barbas CF 3rd (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A 94(11):5525–5530

    PubMed  CAS  Google Scholar 

  • Liu K, Hipkens S, Yang T, Abraham R, Zhang W, Chopra N, Knollmann B, Magnuson MA, Roden DM (2006) Recombinase-mediated cassette exchange to rapidly and efficiently generate mice with human cardiac sodium channels. Genesis 44(11):556–564

    PubMed  CAS  Google Scholar 

  • Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A 102(6):2232–2237

    PubMed  CAS  Google Scholar 

  • Loew R, Selevsek N, Fehse B, von Laer D, Baum C, Fauser A, Kuehlcke K (2004) Simplified generation of high-titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of a lox-P-flanked marker gene. Mol Ther 9(5):738–746

    CAS  Google Scholar 

  • Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci U S A 92(13):5940–5944

    PubMed  CAS  Google Scholar 

  • Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25(11):1298–1306

    PubMed  CAS  Google Scholar 

  • Long Q, Shelton KD, Lindner J, Jones JR, Magnuson MA (2004) Efficient DNA cassette exchange in mouse embryonic stem cells by staggered positive-negative selection. Genesis 39(4):256–262

    PubMed  CAS  Google Scholar 

  • Loonstra A, Vooijs M, Beverloo HB, Allak BA, van Drunen E, Kanaar R, Berns A, Jonkers J (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98(16):9209–9214

    PubMed  CAS  Google Scholar 

  • Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334(4):1191–1197

    PubMed  CAS  Google Scholar 

  • Markowitz D, Goff S, Bank A (1988) A safe packaging line for gene transfer: separting viral genes on two different plasmids. J Virol 62:1120–1124

    CAS  Google Scholar 

  • Masui S, Shimosato D, Toyooka Y, Yagi R, Takahashi K, Niwa H (2005) An efficient system to establish multiple embryonic stem cell lines carrying an inducible expression unit. Nucleic Acids Res 33(4):e43

    PubMed  Google Scholar 

  • McLeod M, Craft S, Broach JR (1986) Identification of the crossover site during FLP-mediated recombination in the Saccharomyces cerevisiae plasmid 2 microns circle. Mol Cell Biol 6(10):3357–3367

    PubMed  CAS  Google Scholar 

  • Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701

    PubMed  CAS  Google Scholar 

  • Miller DG, Miller AD (1993) Inhibitors of retrovirus infection are secreted by several hamster cell lines and are also present in hamster sera. J Virol 67(9):5346–5352

    PubMed  CAS  Google Scholar 

  • Miller AD, Garcia JV, von Suhr N, Lynch CM, Wilson C, Eiden MV (1991) Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol 65(5):2220–2224

    CAS  Google Scholar 

  • Missirlis PI, Smailus DE, Holt RA (2006) A high-throughput screen identifying sequence and promiscuity characteristics of the loxP spacer region in Cre-mediated recombination. BMC Genomics 7:73

    PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2(8):E234

    PubMed  Google Scholar 

  • Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104(9):3055–3060

    PubMed  CAS  Google Scholar 

  • Nakano M, Odaka K, Takahashi Y, Ishimura M, Saito I, Kanegae Y (2005) Production of viral vectors using recombinase-mediated cassette exchange. Nucleic Acids Res 33(8): e76.

    PubMed  Google Scholar 

  • Naviaux RK, Costanzi E, Haas M, Verma IM (1996) The pCL vector system: rapid production of helper-free, high-titer, recombinant retroviruses. J Virol 70(8):5701–5705.

    PubMed  CAS  Google Scholar 

  • O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251(4999):1351–1355

    PubMed  Google Scholar 

  • Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, Glimm H, Kuhlcke K, Schilz A, Kunkel H et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12(4):401–409

    PubMed  CAS  Google Scholar 

  • Pavletich NP and Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817.

    PubMed  CAS  Google Scholar 

  • Peitz M, Pfannkuche K, Rajewsky K, Edenhofer F (2002) Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proc Natl Acad Sci U S A 99(7):4489–4494

    PubMed  CAS  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763

    PubMed  Google Scholar 

  • Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973

    PubMed  CAS  Google Scholar 

  • Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH (2008) Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther 16(4):707–717

    PubMed  CAS  Google Scholar 

  • Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2:e162

    PubMed  Google Scholar 

  • Saam JR, Gordon JI (1999) Inducible gene knockouts in the small intestinal and colonic epithelium. J Biol Chem 274(53):38071–38082

    PubMed  CAS  Google Scholar 

  • Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170

    PubMed  CAS  Google Scholar 

  • Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32(20):6086–6095

    PubMed  CAS  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33(43):12746–12751

    PubMed  CAS  Google Scholar 

  • Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8(7):665–668

    PubMed  CAS  Google Scholar 

  • Schnütgen F, Stewart AF, von Melchner H, Anastassiadis K (2006) Engineering embryonic stem cells with recombinase systems. Methods Enzymol 420:100–136

    PubMed  Google Scholar 

  • Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30(23):e134

    PubMed  Google Scholar 

  • Schubeler D, Maass K, Bode J (1998) Retargeting of retroviral integration sites for the predictable expression of transgenes and the analysis of cis-acting sequences. Biochemistry 37(34):11907–11914

    PubMed  CAS  Google Scholar 

  • Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJ, Hauser H, Wirth D (2006) A new generation of retroviral producer cells: predictable and stable virus production by Flp-mediated site-specific integration of retroviral vectors. Mol Ther 14(2):285–292

    PubMed  CAS  Google Scholar 

  • Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF (1998) Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 26(6):1427–1432

    PubMed  CAS  Google Scholar 

  • Senecoff JF, Cox MM (1986) Directionality in FLP protein-promoted site-specific recombination is mediated by DNA–DNA pairing. J Biol Chem 261(16):7380–7386

    PubMed  CAS  Google Scholar 

  • Senecoff JF, Rossmeissl PJ, Cox MM (1988) DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site. J Mol Biol 201(2):405–421

    PubMed  CAS  Google Scholar 

  • Sharma N, Moldt B, Dalsgaard T, Jensen TG, Mikkelsen JG (2008) Regulated gene insertion by steroid-induced PhiC31 integrase. Nucleic Acids Res 36(11):e67

    PubMed  Google Scholar 

  • Shimshek DR, Kim J, Hubner MR, Spergel DJ, Buchholz F, Casanova E, Stewart AF, Seeburg PH, Sprengel R (2002) Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32(1):19–26

    PubMed  CAS  Google Scholar 

  • Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    CAS  Google Scholar 

  • Sternberg N, Sauer B, Hoess R, Abremski K (1986) Bacteriophage P1 cre gene and its regulatory region. Evidence for multiple promoters and for regulation by DNA methylation. J Mol Biol 187(2):197–212

    PubMed  CAS  Google Scholar 

  • Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95(10):5505–5510

    PubMed  CAS  Google Scholar 

  • Toledo F, Liu CW, Lee CJ, Wahl GM (2006) RMCE-ASAP: a gene targeting method for ES and somatic cells to accelerate phenotype analyses. Nucleic Acids Res 34(13):e92

    PubMed  Google Scholar 

  • Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651

    PubMed  CAS  Google Scholar 

  • van der Weyden L, Adams DJ, Bradley A (2002) Tools for targeted manipulation of the mouse genome. Physiol Genomics 11(3):133–164

    PubMed  Google Scholar 

  • Verhoeyen E, Hauser H, Wirth D (2001) Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement. Hum Gene Ther 12(8):933–944

    PubMed  CAS  Google Scholar 

  • Vetter D, Andrews BJ, Roberts-Beatty L, Sadowski PD (1983) Site-specific recombination of yeast 2-micron DNA in vitro. Proc Natl Acad Sci U S A 80(23):7284–7288

    PubMed  CAS  Google Scholar 

  • Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J, Wood WG, Higgs DR, Smith AJ (2007) Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128(1):197–209

    PubMed  CAS  Google Scholar 

  • Waterhouse P, Griffiths AD, Johnson KS, Winter G (1993) Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res 21(9):2265–2266

    PubMed  CAS  Google Scholar 

  • Wiberg FC, Rasmussen SK, Frandsen TP, Rasmussen LK, Tengbjerg K, Coljee VW, Sharon J, Yang CY, Bregenholt S, Nielsen LS et al (2006) Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol Bioeng 94(2):396–405

    PubMed  CAS  Google Scholar 

  • Williams S, Mustoe T, Mulcahy T, Griffiths M, Simpson D, Antoniou M, Irvine A, Mountain A, Crombie R (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol 5:17

    PubMed  CAS  Google Scholar 

  • Wirth D, Hauser H (2004) Flp-mediated integration of expression cassettes into FRT-tagged chromosomal loci in mammalian cells. Methods Mol Biol 267:467–476

    PubMed  CAS  Google Scholar 

  • Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18(5):411–419

    PubMed  CAS  Google Scholar 

  • Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C, Wahl GM (2005) Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res 33(17):e147

    PubMed  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705

    PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300(5626):1749–1751

    PubMed  CAS  Google Scholar 

  • Yang W, Steitz TA (1995) Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell 82(2):193–207

    PubMed  CAS  Google Scholar 

  • Yap MW, Kingsman SM, Kingsman AJ (2000) Effects of stoichiometry of retroviral components on virus production. J Gen Virol 81(Pt 9):2195–2202

    CAS  Google Scholar 

  • Yarranton GT (1990) Mammalian recombinant proteins: vectors and expression systems. Curr Opin Biotechnol 1(2):133–140

    PubMed  CAS  Google Scholar 

  • Zahn-Zabal M, Kobr M, Girod PA, Imhof M, Chatellard P, de Jesus M, Wurm F, Mermod N (2001) Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol 87(1):29–42

    PubMed  CAS  Google Scholar 

  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, Kinnon C, Gaspar HB, Antoniou M, Thrasher AJ (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110(5):1448–1457

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gama-Norton, L. et al. (2009). Defeating Randomness – Targeted Integration as a Boost for Biotechnology. In: Al-Rubeai, M. (eds) Cell Line Development. Cell Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2245-5_3

Download citation

Publish with us

Policies and ethics