Skip to main content

Samenvatting

Bij diepe hersenstimulatie (‘deep brain stimulation’, DBS) worden verschillende neurofysiologische technieken gebruikt, hetzij voor betere lokalisatie van het DBS-doel, hetzij om meer te weten te komen over de elektrische signalen van de neuronen ter plekke van het DBS-doel. Het gaat dan om registratie van de elektrische signalen van de neuronen, die uit hun vuurpatronen kunnen bestaan. Dit gebeurt met zeer kleine naaldjes en heet ‘microelectrode recording’ (MER). Ook is het mogelijk met grotere elektroden de gezamenlijke activiteit van een ensemble van neuronen te meten en dit heet dan ‘local field potential’ (LFP-)recording. Een andere neurofysiologische techniek is het uitvoeren van een proefstimulatie tijdens de DBS-operatie, om de optimale plaats voor de stimulatie-elektrode vast te stellen. De afgelopen jaren zijn deze technieken steeds meer verfijnd en zij behoren nu tot het standaardinstrumentarium van de klinisch neurofysioloog die betrokken is bij DBS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatuur

  1. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P. Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology. 2000;55(12 Suppl 6):S40–4.

    CAS  PubMed  Google Scholar 

  2. Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov Disord. 2002;17(Suppl 3):S145–9.

    Article  PubMed  Google Scholar 

  3. Krack P, Batir A, Van BN, Chabardes S, Fraix V, Ardouin C, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–34.

    Article  CAS  PubMed  Google Scholar 

  4. Slavin KV. Intra-operative microrecording equipment: comparative analysis of commercially available microrecording systems. Neurol Res. 2002;24(6):544–54.

    Article  PubMed  Google Scholar 

  5. Bour LJ, Contarino MF, Foncke EM, Bie RM de, Munckhof P van den, Speelman JD, et al. Long-term experience with intraoperative microrecording during DBS neurosurgery in STN and GPi. Acta Neurochir. (Wien) 2010;152(12):2069–77.

    Google Scholar 

  6. Anastassiou CA, Montgomery SM, Barahona M, Buzsaki G, Koch C. The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci. 2010;30(5):1925–36.

    Article  CAS  PubMed  Google Scholar 

  7. Buzsaki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bour LJ, Lourens MAJ, Verhagen R, Bie RMA de, Munckhof P van den, Schuurman PR, et al. Directional recording of subthalamic spectral power densities in Parkinson’s disease and the effect of deep brain stimulation. Brain Stimul. 2015;8(4):730–41.

    Google Scholar 

  9. Alegre M, Alonso-Frech F, Rodriguez-Oroz MC, Guridi J, Zamarbide I, Valencia M, et al. Movement-related changes in oscillatory activity in the human subthalamic nucleus: ipsilateral vs. contralateral movements. Eur J Neurosci. 2005;22(9):2315–24.

    Article  CAS  PubMed  Google Scholar 

  10. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Lazzaro V di. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–8.

    Google Scholar 

  11. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P, Lazzaro V di, et al. Movement-related changes in synchronization in the human basal ganglia. Brain 2002;125(Pt 6):1235–46.

    Google Scholar 

  12. Shimojima Y, Hashimoto T, Kaneko K, Yazaki M, Yoshida K, Goto T, et al. Thalamic stimulation for disabling tremor in a patient with spinocerebellar degeneration. Stereotact Funct Neurosurg. 2005;83(4):131–4.

    Article  PubMed  Google Scholar 

  13. Lenz FA, Tasker RR, Kwan HC, Schnider S, Kwong R, Murayama Y, et al. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic ‘tremor cells’ with the 3–6 Hz component of parkinsonian tremor. J Neurosci. 1988;8(3):754–64.

    CAS  PubMed  Google Scholar 

  14. Herzog J, Hamel W, Wenzelburger R, Potter M, Pinsker MO, Bartussek J, et al. Kinematic analysis of thalamic versus subthalamic neurostimulation in postural and intention tremor. Brain. 2007;130(Pt 6):1608–25.

    Article  PubMed  Google Scholar 

  15. Zhuang P, Li YJ. Characteristics of subthalamic neuronal activities in Parkinson s disease. Sheng Li Xue Bao. 2003;55(4):435–41.

    PubMed  Google Scholar 

  16. Herzog J, Fietzek U, Hamel W, Morsnowski A, Steigerwald F, Schrader B, et al. Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord. 2004;19(9):1050–4.

    Article  PubMed  Google Scholar 

  17. Cagnan H, Dolan K, He X, Contarino MF, Schuurman R, Munckhof P van den, et al. Automatic subthalamic nucleus detection from microelectrode recordings based on noise level and neuronal activity. J Neural Eng. 2011;8(4):046006.

    Google Scholar 

  18. Dolan K, Martens HC, Schuurman PR, Bour LJ. Automatic noise-level detection for extra-cellular micro-electrode recordings. Med Biol Eng Comput. 2009;47(7):791–800.

    Article  PubMed  Google Scholar 

  19. Hertel F, Zuchner M, Weimar I, Gemmar P, Noll B, Bettag M, et al. Implantation of electrodes for deep brain stimulation of the subthalamic nucleus in advanced Parkinson’s disease with the aid of intraoperative microrecording under general anesthesia. Neurosurgery. 2006;59(5):E1138.

    Article  PubMed  Google Scholar 

  20. Guridi J, Gorospe A, Ramos E, Linazasoro G, Rodriguez MC, Obeso JA. Stereotactic targeting of the globus pallidus internus in Parkinson’s disease: imaging versus electrophysiological mapping. Neurosurgery. 1999;45(2):278–87.

    Article  CAS  PubMed  Google Scholar 

  21. Vitek JL, Chockkan V, Zhang JY, Kaneoke Y, Evatt M, DeLong MR, et al. Neuronal activity in the basal ganglia in patients with generalized dystonia and hemiballismus. Ann Neurol. 1999;46(1):22–35.

    Article  CAS  PubMed  Google Scholar 

  22. Steigerwald F, Hinz L, Pinsker MO, Herzog J, Stiller RU, Kopper F, et al. Effect of propofol anesthesia on pallidal neuronal discharges in generalized dystonia. Neurosci Lett. 2005;386(3):156–9.

    Article  CAS  PubMed  Google Scholar 

  23. Theodore WH, Fisher R. Brain stimulation for epilepsy. Acta Neurochir Suppl. 2007;97(Pt 2):261–72.

    Article  CAS  PubMed  Google Scholar 

  24. Hodaie M, Cordella R, Lozano AM, Wennberg R, Dostrovsky JO. Bursting activity of neurons in the human anterior thalamic nucleus. Brain Res. 2006;1115(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  25. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol. 2013;74(3):449–57.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen CC, Pogosyan A, Zrinzo LU, Tisch S, Limousin P, Ashkan K, et al. Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in Parkinson’s disease surgery. Exp Neurol. 2006;198(1):214–21.

    Article  PubMed  Google Scholar 

  27. Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain. 2000;123(Pt 7):1459–70.

    Article  PubMed  Google Scholar 

  28. Kuhn AA, Kempf F, Brucke C, Gaynor DL, Martinez-Torres I, Pogosyan A, et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. J Neurosci. 2008;28(24):6165–73.

    Article  CAS  PubMed  Google Scholar 

  29. Priori A, Foffani G, Pesenti A, Tamma F, Bianchi AM, Pellegrini M, et al. Rhythm-specific pharmacological modulation of subthalamic activity in Parkinson’s disease. Exp Neurol. 2004;189(2):369–79.

    Article  CAS  PubMed  Google Scholar 

  30. Foncke EM, Bour LJ, Speelman JD, Koelman JH, Tijssen MA. Local field potentials and oscillatory activity of the internal globus pallidus in myoclonus-dystonia. Mov Disord. 2007;22(3):369–76.

    Article  PubMed  Google Scholar 

  31. Priori A, Giannicola G, Rosa M, Marceglia S, Servello D, Sassi M, et al. Deep brain electrophysiological recordings provide clues to the pathophysiology of Tourette syndrome. Neurosci Biobehav Rev. 2013;37(6):1063–8.

    Article  PubMed  Google Scholar 

  32. Maling N, Hashemiyoon R, Foote KD, Okun MS, Sanchez JC. Increased thalamic gamma band activity correlates with symptom relief following deep brain stimulation in humans with Tourette’s syndrome. PLoS One. 2012;7(9):e44215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bour LJ, Ackermans L, Foncke EM, Cath D, Linden C van der, Visser VV, et al. Tic related local field potentials in the thalamus and the effect of deep brain stimulation in Tourette syndrome: report of three cases. Clin Neurophysiol. 2015;126(8):1578–88.

    Google Scholar 

  34. Brown P, Williams D. Basal ganglia local field potential activity: character and functional significance in the human. Clin Neurophysiol. 2005;116(11):2510–9.

    Article  PubMed  Google Scholar 

  35. Hammond C, Bergman H, Brown P. Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 2007;30(7):357–64.

    Article  CAS  PubMed  Google Scholar 

  36. Holdefer RN, Cohen BA, Greene KA. Intraoperative local field recording for deep brain stimulation in Parkinson’s disease and essential tremor. Mov Disord. 2010;25(13):2067–75.

    Article  PubMed  Google Scholar 

  37. Kuhn AA, Trottenberg T, Kivi A, Kupsch A, Schneider GH, Brown P. The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Exp Neurol. 2005;194(1):212–20.

    Article  PubMed  Google Scholar 

  38. Marceglia S, Rossi L, Foffani G, Bianchi A, Cerutti S, Priori A. Basal ganglia local field potentials: applications in the development of new deep brain stimulation devices for movement disorders. Expert Rev Med Devices. 2007;4(5):605–14.

    Article  PubMed  Google Scholar 

  39. Priori A, Ardolino G, Marceglia S, Mrakic-Sposta S, Locatelli M, Tamma F, et al. Low-frequency subthalamic oscillations increase after deep brain stimulation in Parkinson’s disease. Brain Res Bull. 2006;71(1–3):149–54.

    Article  CAS  PubMed  Google Scholar 

  40. Silberstein P, Kuhn AA, Kupsch A, Trottenberg T, Krauss JK, Wohrle JC, et al. Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain. 2003;126(Pt 12):2597–608.

    Article  PubMed  Google Scholar 

  41. Contarino MF, Bour LJ, Bot M, Munckhof P van den, Speelman JD, Schuurman PR, et al. Tremor-specific neuronal oscillation pattern in dorsal subthalamic nucleus of parkinsonian patients. Brain Stimul. 2012;5(3):305–14.

    Article  PubMed  Google Scholar 

  42. Lourens MA, Meijer HG, Contarino MF, Munckhof P van den, Schuurman PR, Gils SA van, et al. Functional neuronal activity and connectivity within the subthalamic nucleus in Parkinson’s disease. Clin Neurophysiol. 2013;124(5):967–81.

    Google Scholar 

  43. Priori A, Foffani G, Rossi L, Marceglia S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol. 2013;245:77–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Copyright information

© 2016 Bohn Stafleu van Loghum

About this chapter

Cite this chapter

Bour, L., van Kranen-Mastenbroek, V. (2016). Neurofysiologische aspecten van DBS. In: Temel, Y., Leentjens, A., de Bie, R. (eds) Handboek diepe hersenstimulatie bij neurologische en psychiatrische aandoeningen. Bohn Stafleu van Loghum, Houten. https://doi.org/10.1007/978-90-368-0959-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-368-0959-7_5

  • Published:

  • Publisher Name: Bohn Stafleu van Loghum, Houten

  • Print ISBN: 978-90-368-0958-0

  • Online ISBN: 978-90-368-0959-7

  • eBook Packages: Dutch language eBook collection

Publish with us

Policies and ethics