Skip to main content

The nonlinear multidomain model: a new formal asymptotic analysis

  • Conference paper
Geometric Partial Differential Equations proceedings

Part of the book series: CRM Series ((CRMSNS,volume 15))

Abstract

We study the asymptotic analysis of a singularly perturbed weakly parabolic system of m-equations of anisotropic reaction-diffusion type. Our main result formally shows that solutions to the system approximate a geometric motion of a hypersurface by anisotropic mean curvature. The anisotropy, supposed to be uniformly convex, is explicit and turns out to be the dual of the star-shaped combination of the m original anisotropies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ambrosio, P. Colli Franzone and G. Savaré, On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model, Interface Free Bound, 2 (2000), 213–266.

    Article  Google Scholar 

  2. D. Bao, S.-S. Chern and Z. Shen, “An Introduction to Riemann-Finsler Geometry”, Graduate Texts in Mathematics, Vol. 200, Springer-Verlag, 2000.

    Google Scholar 

  3. G. Bellettini, “Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations”, Edizioni Sc. Norm. Sup. Pisa, to appear.

    Google Scholar 

  4. G. Bellettini, P. Colli Franzone and M. Paolini, Convergence of front propagation for anisotropic bistable reaction-diffusion equations, Asymptotic Anal. 15 (1997), 325–358.

    MATH  MathSciNet  Google Scholar 

  5. G. Bellettini and M. Paolini, Quasi—optimal error estimates for the mean curvature flow with a forcing term, Differential Integral Equations 8 (1995), 735–752.

    MATH  MathSciNet  Google Scholar 

  6. G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), 537–566.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. Bellettini, M. Paolini and F. Pasquarelli, Non convex mean curvature flow as a formal singular limit of the non linear bidomain model, Advances in Differential Equations, to appear.

    Google Scholar 

  8. G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in Calculus of Variations, Ann. Mat. Pura Appl. 170 (1996), 329–359.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Bence, B. Merriman and S. Osher, Diffusion generated motion by mean curvature, Computational Crystal Growers Workshop, J. Taylor (ed.), Selected Lectures in Math., Amer. Math. Soc. (1992), 73–83.

    Google Scholar 

  10. E. Bonnetier, E. Bretin and A. Chambolle, Consistency result for a non monotone scheme for anisotropic mean curvature flow, Interfaces Free Bound. 14 (2012), 1–35.

    Article  MATH  MathSciNet  Google Scholar 

  11. L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation Arch. Ration. Mech. Anal. 124 (1993), 355–379.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Chambolle and M. Novaga, Convergence of an algorithm for the anisotropic and crystalline mean curvature flow, SLAM J. Math. Anal. 37 (2006), 1878–1987.

    MathSciNet  Google Scholar 

  13. P. Colli Franzone, M. Pennacchio and G. Savaré, Multiscale modeling for the bioelectric activity of the heart, SLAM J. Math. Anal. 37 (2005), 1333–1370.

    Google Scholar 

  14. P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field ad micro and macroscopic level, Evolution equations, semigroups and functional analysis (Milano 2000), Vol. 50 Progress Nonlin. Diff. Equations Appl. Birkhäuser, Basel (2002), 49–78.

    Chapter  Google Scholar 

  15. J. Coromilas, A. L. Dillon and S. M. Wit, Anisotropy reentry as a cause of ventricular tachyarrhytmias, Cardiac Electrophysiology: From Cell to Bedside, ch.49, W. B. Saunders Co., Philadelphia (1994), 511–526.

    Google Scholar 

  16. R. M. Miura, Accurate computation of the stable solitary wave for the FitzHugh-Nagumo equations, J. Math. Biol. 13 (1981/82), 247–269.

    Article  MathSciNet  Google Scholar 

  17. R. T. Rockafellar, “Convex Analysis”, Princeton University Press, Princeton, 1972.

    Google Scholar 

  18. R. Schneider, “Convex Bodies: the Brunn-Minkowski Theory”, Encyclopedia of Mathematics and its Applications, Vol. 44, Cambridge Univ. Press, 1993.

    Google Scholar 

  19. A. C. Thompson, “Minkowski Geometry”, Encyclopedia of Mathematics and its Applications, Vol. 63, Cambridge Univ. Press, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Amato, S., Bellettini, G., Paolini, M. (2013). The nonlinear multidomain model: a new formal asymptotic analysis. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds) Geometric Partial Differential Equations proceedings. CRM Series, vol 15. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-473-1_2

Download citation

Publish with us

Policies and ethics