Skip to main content

Maximally localized Wannier functions: existence and exponential localization

  • Conference paper
Geometric Partial Differential Equations proceedings

Part of the book series: CRM Series ((CRMSNS,volume 15))

  • 1217 Accesses

Abstract

We describe recent results proved in [32] in collaboration with G.Panati, concerning a periodic Schrodinger operator and the maximally localized (composite) Wannier functions corresponding to a relevant family of its Bloch bands. More precisely, we discuss the minimization problem for the associated localization functional introduced in [22] and we review some rigorous results about the existence and exponential localization of its minimizers, in dimension d ≤ 3. The proof combines ideas and methods from the Calculus of Variations and the regularity theory for harmonic maps between Riemannian manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 24.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 34.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. I. Blount, Formalism of Band Theory, In: “Solid State Physics”, Scitz, F., Turnbull, D. (eds.), Vol. 13, Academic Press, 1962,305–373.

    Google Scholar 

  2. F. Bethuel and X. M. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.

    Article  MATH  MathSciNet  Google Scholar 

  3. Ch. Brouder, G. Panati, M. Calandra, Ch. Mourougane and N. Marzari, Exponential localization of Wannier functions in insulators, Phys. Rev. Lett. 98 (2007), 046402.

    Article  Google Scholar 

  4. S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Cl. Sci. 17 (1963), 175–188.

    MATH  MathSciNet  Google Scholar 

  5. E. Cancs, A. Deleurence and M. Lewin, A new approach to the modeling of local defects in crystals: the reduced Hartree-Fock case, Commun. Math. Phys. 281 (2008), 129–177.

    Article  Google Scholar 

  6. S. Y. Chang, L. Wang and P. Yang, Regularity of harmonic maps, Comm. Pure Appl. Math. 52 (1999), 1099–1111.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. des Cloizeaux, Energy bands and projection operators in a crystal: Analytic and asymptotic properties, Phys. Rev. 135 (1964), A685–A697.

    Article  MathSciNet  Google Scholar 

  8. J. des Cloizeaux, Analytical properties of n-dimensional energy bands and Wannier functions, Phys. Rev. 135 (1964), A698–A707.

    Article  MathSciNet  Google Scholar 

  9. R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247–286.

    MATH  MathSciNet  Google Scholar 

  10. B. A. Dubrovin and S. P. Novikov, Ground state of a two-dimensional electron in a periodic magnetic field, Zh. Eksp. Teor. Fiz. 79 (1980), 1006–1016. Translated in Sov. Phys. JETP 52, Vol. 3 (1980) 511–516.

    MathSciNet  Google Scholar 

  11. S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71 (1999), 1085–1111.

    Article  Google Scholar 

  12. F. Hang and F. H. Lin, Topology of Sobolev mappings. II, Acta Math. 191 (2003), 55–107.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Helffer and J. Sjöstrand, Équation de Schrödinger avec champ magnétique et equation de Harper. In: “Schrödinger operators”, Lecture Notes in Physics 345, Springer, Berlin, 1989, 118–197.

    Google Scholar 

  14. R. Howard and S. W. Wei, Nonexistence of stable harmonic maps to and from certain homogeneous spaces and submanifolds of Euclidean space, Trans. Amer. Math. Soc. 294 (1986), 319–331.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Jost, “Riemannian Geometry and Geometric Analysis”, Universitext, Springer, Berlin, 1995.

    Book  Google Scholar 

  16. T. Kato, “Perturbation Theory for Linear Operators”, Springer, Berlin, 1966.

    Book  Google Scholar 

  17. S. Kievelsen, Wannier functions in one-dimensional disordered systems: application to fractionally charged solitons, Phys. Rev. B 26 (1982), 4269–4274.

    Article  Google Scholar 

  18. R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47 (1993), 1651–1654.

    Article  Google Scholar 

  19. W. Kohn, Analytic properties of bloch waves and Wannier functions, Phys. Rev. 115 (1959), 809.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. H. Lin and C. Y. Wang, “The Analysis of Harmonic Maps and their Heat Flows”, World Scientific, 2008.

    Google Scholar 

  21. F. H. Lin and C. Y. Wang, Stable stationary harmonic maps to spheres, Acta Math. Sin. (Engl. Ser.) 22 (2006), 319–330.

    Article  MATH  MathSciNet  Google Scholar 

  22. N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B 56 (1997), 12847–12865.

    Article  Google Scholar 

  23. N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys. 84 (2012), 1419.

    Article  Google Scholar 

  24. C. B. Morrey, “Multiple Integrals in the Calculus of Variations” Grund. der math. Wissenschaften 130, Springer, New York, 1966.

    Google Scholar 

  25. R. Moser, “Partial Regularity for Harmonic Maps and Related Problems”, World Scientific, 2005.

    Google Scholar 

  26. Y.-S. Lee, M. B. Nardelli and N. Marzari, Band structure and quantum conductance of nanostructures from maximally localized Wannier functions: the case of functionalized carbon nan-otubes, Phys. Rev. Lett. 95 (2005), 076804.

    Article  Google Scholar 

  27. G. Nenciu, Existence of the exponentially localised Wannier functions, Comm. Math. Phys. 91 (1983), 81–85.

    Article  MATH  MathSciNet  Google Scholar 

  28. G. Nenciu, Dynamics of band electrons in electric and magnetic fields: Rigorous justification of the effective Hamiltonians, Rev. Mod. Phys. 63 (1991), 91–127.

    Article  Google Scholar 

  29. S. P. Novikov, Magnetic Bloch functions and vector bundles. Typical dispersion law and quantum numbers, Sov. Math. Dokl. 23 (1981), 298–303.

    MATH  Google Scholar 

  30. G. Panati, H. Spohn and S. Teufel, Effective dynamics for Bloch electrons: Peierls substitution and beyond, Comm. Math. Phys. 242 (2003), 547–578.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Panati, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré 8 (2007), 995–1011.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. Panati and A. Pisante, Bloch bundles, Marzari-Vanderbilt functional and maximally localized Wannier functions, Commun. Math. Phys., to appear.

    Google Scholar 

  33. M. Reed and B. Simon, “Methods of Modern Mathematical Physics”, Vol. IV: “Analysis of Operators”, Academic Press, New York, 1978.

    Google Scholar 

  34. R. Resta, Theory of the electric polarization in crystals, Ferro-electrics 136 (1992), 51-75.

    Google Scholar 

  35. L. Simon, “Theorems on Regularity and Singularity of Energy Minimizing Maps”, Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 1996.

    Google Scholar 

  36. E. Stein, “Harmonic Analysis: Real-variable Methods, Orthogonality, Oscillatory Integrals”, Princeton Mathematical Series, 43. Princeton University Press, Princeton, 1993.

    Google Scholar 

  37. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307–335.

    MATH  MathSciNet  Google Scholar 

  38. R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Invent. Math. 78 (1984), 89–100.

    Article  MATH  MathSciNet  Google Scholar 

  39. K. Uhlenbeck, Harmonic maps into Lie groups: classical solutions of the chiral model, J. Differential Geom. 30 (1989), 1–50.

    MATH  MathSciNet  Google Scholar 

  40. G. Valli, On the energy spectrum of harmonic 2-spheres in unitary groups, Topology 27 (1988), 129–136.

    Article  MATH  MathSciNet  Google Scholar 

  41. G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52 (1937), 191–197.

    Article  Google Scholar 

  42. W. Wei, Liouville Theorems for stable harmonic maps into either strongly unstable, or δ-pinched manifolds, Proceedings of Symposia in Pure Mathematic 44 (1986).

    Google Scholar 

  43. Y. L. Xin, “Geometry of Harmonic Maps. Progress in Nonlinear Differential Equations and their Applications”, Vol. 23, Birkhäuser, Boston, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Scuola Normale Superiore Pisa

About this paper

Cite this paper

Pisante, A. (2013). Maximally localized Wannier functions: existence and exponential localization. In: Chambolle, A., Novaga, M., Valdinoci, E. (eds) Geometric Partial Differential Equations proceedings. CRM Series, vol 15. Edizioni della Normale, Pisa. https://doi.org/10.1007/978-88-7642-473-1_12

Download citation

Publish with us

Policies and ethics