Skip to main content

Use of FOT for Optimising Mechanical Ventilation

  • Chapter
  • First Online:
Mechanics of Breathing

Abstract

The forced oscillation technique (FOT) is a non-invasive technique for the assessment of respiratory mechanics. Since it does not require patient’s collaboration and it is not affected by spontaneous breathing, it can be used in evaluating lung function in non-invasive and invasive mechanical ventilation in order to adjust ventilation strategy accordingly. In particular, within-breath FOT allows the evaluation of the presence of expiratory flow limitation (EFL) and lung volume heterogeneity and recruitment, all of which are of great interest in clinical practice for tailoring mechanical ventilation according to the pathophysiological features of each individual subject. In patients with chronic obstructive pulmonary disease (COPD), FOT has been used to identify the lowest level of pressure able to abolish EFL during non-invasive mechanical ventilation, while in adults and newborns with respiratory distress syndrome, FOT has been used to identify the lowest level of PEEP that minimises heterogeneity in the ventilation and prevents lung collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Navajas D, Farrè R (2000) Forced oscillation assessment of respiratory mechanics in ventilated patients. Crit Care 5:3–9

    Article  PubMed Central  PubMed  Google Scholar 

  2. Navajas D, Farrè R, Rotger M et al (1998) Assessment of airflow obstruction during CPAP by means of forced oscillation in patients with sleep apnea. Am J Respir Crit Care Med 157:1526–1530

    Article  CAS  PubMed  Google Scholar 

  3. Peslin R, Felicio-da SJ, Duvivier C, Chabot F (1993) Respiratory mechancics studied by forced oscillations during artificial ventilation. Eur Respir J 6:772–784

    CAS  PubMed  Google Scholar 

  4. Farrè R, Ferrer M, Rotger M, Navajas D (1995) Servocontrolled generator to measure respiratory impedance from 0.25 to 26 Hz in ventilated patients at different PEEP levels. Eur Respir J 8:1222–1227

    Article  PubMed  Google Scholar 

  5. Lutchen KR, Yang K, Kaczka DW, Suki B (1993) Optimal ventilation waveform for estimating low-frequency respiratory impedance. J Appl Physiol 75:478–488

    CAS  PubMed  Google Scholar 

  6. Farrè R, Rotger M, Monserrat JM, Navajas D (1997) A system to generate simultaneous forced oscillation and continuous positive airway pressure. Eur Respir J 10:1349–1353

    Article  PubMed  Google Scholar 

  7. Farrè R, Manzini M, Rotger M et al (2001) Oscillatory resistance measured during noninvasive proportional assist ventilation. Am J Respir Crit Care Med 164:790–794

    Article  PubMed  Google Scholar 

  8. Navajas D, Farrè R, Rotger M, Canet J (1989) Recording pressure at the distal end of the endotracheal tube to measure respiratory impedance. Eur Respir J 2:178–184

    CAS  PubMed  Google Scholar 

  9. Farrè R, Peslin R, Rotger M et al (1999) Forced oscillation total respiratory resistance and spontaneous breathing lung resistance in COPD patients. Eur Respir J 14:172–178

    Article  PubMed  Google Scholar 

  10. Farrè R, Navajas D, Peslin R et al (1990) A correction procedure for the asymmetry of differential pressure transducers in respiratory impedance measurements. IEEE Trans Biomed Eng 36:1137–1140

    Article  Google Scholar 

  11. Daroczy B, Hantos Z (1990) Generation of optimum pseudorandom signals for respiratory impedance measurements. Int J Biomed Comput 25:21–31

    Article  CAS  PubMed  Google Scholar 

  12. Michaelson ED, Grassman ED, Peters WR (1975) Pulmonary mechanics by spectral analysis of forced random noise. J Clin Invest 56:1210–1230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  Google Scholar 

  14. Kaczka DW, Barnas GM, Suki B, Lutchen KR (1995) Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra. Ann Biomed Eng 23:135–151

    Article  CAS  PubMed  Google Scholar 

  15. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoustics 15:70–73

    Article  Google Scholar 

  16. Horowitz JG, Siegel SD, Primiano FPJ, Chester EH (1983) Computation of respiratory impedance from forced sinusoidal oscillations during breathing. Comput Biomed Res 16:499–521

    Article  CAS  PubMed  Google Scholar 

  17. Peslin R, Ying Y, Gallina C, Duvivier C (1992) Within-breath variations of forced oscillation resistance in healthy subjects. Eur Respir J 5:86–92

    CAS  PubMed  Google Scholar 

  18. Cauberghs M, Van de Woestijne KP (1992) Changes of respiratory input impedance during breathing in humans. J Appl Physiol 73:2355–2362

    CAS  PubMed  Google Scholar 

  19. Avanzolini G, Barbini P (1985) A comparative evaluation of three on-line identification methods for a respiratory mechanical model. IEEE Trans Biomed Eng 32:957–963

    Article  CAS  PubMed  Google Scholar 

  20. Avanzolini G, Barbini P, Cappello A, Cevenini G (1990) Real-time tracking of parameters of lung mechanics: emphasis on algorithm tuning. J Biomed Eng 12:489–495

    Article  CAS  PubMed  Google Scholar 

  21. Dellaca RL, Rotger M, Aliverti A, Navajas D, Pedotti A, Farre R (2006) Noninvasive detection of expiratory flow limitation in COPD patients during nasal CPAP. Eur Respir J 27:983–991

    CAS  PubMed  Google Scholar 

  22. Jensen A, Atileh H, Suki B, Ingenito EP, Lutchen KR (2001) Selected contribution: airway caliber in healthy and asthmatic subjects: effects of bronchial challenge and deep inspirations. J Appl Physiol 91:506–515

    CAS  PubMed  Google Scholar 

  23. Lauzon AM, Bates JH (1991) Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol 71:1159–1165

    CAS  PubMed  Google Scholar 

  24. Dellaca RL, Santus P, Aliverti A, Stevenson N, Centanni S, Macklem PT et al (2004) Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J 23:232–240

    CAS  PubMed  Google Scholar 

  25. Vassiliou M, Peslin R, Saunier C, Duvivier C (1996) Expiratory flow limitation during mechanical ventilation detected by the forced oscillation method. Eur Respir J 9:779–786

    Article  CAS  PubMed  Google Scholar 

  26. Baldi S, Dellaca R, Govoni L, Torchio R, Aliverti A, Pompilio P et al (2010) Airway distensibility and volume recruitment with lung inflation in COPD. J Appl Physiol 109:1019–1026

    Article  PubMed  Google Scholar 

  27. Pellegrino R, Pompilio PP, Bruni GI, Scano G, Crimi C, Biasco L et al (2009) Airway hyperresponsiveness with chest strapping: a matter of heterogeneity or reduced lung volume? Respir Physiol Neurobiol 166:47–53

    Article  PubMed  Google Scholar 

  28. West JB (2008) Pulmonary pathophysiology: the essentials, 7th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  29. Peslin R, Farre R, Rotger M, Navajas D (1996) Effect of expiratory flow limitation on respiratory mechanical impedance: a model study. J Appl Physiol 81:2399–2406

    CAS  PubMed  Google Scholar 

  30. Dawson SV, Elliott EA (1977) Wave-speed limitation on expiratory flow-a unifying concept. J Appl Physiol 43:498–515

    CAS  PubMed  Google Scholar 

  31. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous breathing. J Appl Physiol 5:779–796

    Google Scholar 

  32. Appendini L, Patessio A, Zanaboni S, Carone M, Gukov B, Donner CF et al (1994) Physiologic effects of positive end-expiratory pressure and mask pressure support during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 149:1069–1076

    Article  CAS  PubMed  Google Scholar 

  33. Elliott MW, Mulvey DA, Moxham J, Green M, Branthwaite MA (1993) Inspiratory muscle effort during nasal intermittent positive pressure ventilation in patients with chronic obstructive airways disease. Anaesthesia 48:8–13

    Article  CAS  PubMed  Google Scholar 

  34. Nava S, Bruschi C, Fracchia C, Braschi A, Rubini F (1997) Patient-ventilator interaction and inspiratory effort during pressure support ventilation in patients with different pathologies. Eur Respir J 10:177–183

    Article  CAS  PubMed  Google Scholar 

  35. Ambrosino N, Nava S, Torbicki A, Riccardi G, Fracchia C, Opasich C et al (1993) Haemodynamic effects of pressure support and PEEP ventilation by nasal route in patients with stable chronic obstructive pulmonary disease. Thorax 48:523–528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Baigorri F, de Monte A, Blanch L, Fernandez R, Valles J, Mestre J et al (1994) Hemodynamic responses to external counterbalancing of auto-positive end-expiratory pressure in mechanically ventilated patients with chronic obstructive pulmonary disease. Crit Care Med 22:1782–1791

    Article  CAS  PubMed  Google Scholar 

  37. Ranieri VM, Giuliani R, Cinnella G, Pesce C, Brienza N, Ippolito EL et al (1993) Physiologic effects of positive end-expiratory pressure in patients with chronic obstructive pulmonary disease during acute ventilatory failure and controlled mechanical ventilation. Am Rev Respir Dis 147:5–13

    Article  CAS  PubMed  Google Scholar 

  38. Patel H, Yang KL (1995) Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Crit Care Med 23:1074–1079

    Article  CAS  PubMed  Google Scholar 

  39. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    Article  CAS  PubMed  Google Scholar 

  40. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645

    Article  CAS  PubMed  Google Scholar 

  41. Mercat A, Richard JC, Vielle B, Jaber S, Osman D, Diehl JL et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:646–655

    Article  CAS  PubMed  Google Scholar 

  42. Villar J, Kacmarek RM, Perez-Mendez L, Aquirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    Article  PubMed  Google Scholar 

  43. Bellardine Black CL, Hoffman AM, Tsai LW, Ingenito EP, Suki B, Kaczka DW et al (2008) Impact of positive end-expiratory pressure during heterogeneous lung injury: insights from computed tomographic image functional modeling. Ann Biomed Eng 36:980–991

    Article  CAS  PubMed  Google Scholar 

  44. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  CAS  PubMed  Google Scholar 

  45. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

    Article  PubMed  Google Scholar 

  46. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342:1301–1308

    Google Scholar 

  47. Bellardine CL, Ingenito EP, Hoffman A, Lopez F, Sanborn W, Suki B et al (2005) Heterogeneous airway versus tissue mechanics and their relation to gas exchange function during mechanical ventilation. Ann Biomed Eng 33:626–641

    Article  CAS  PubMed  Google Scholar 

  48. Kaczka DW, Hager DN, Hawley ML, Simon BA (2005) Quantifying mechanical heterogeneity in canine acute lung injury: impact of mean airway pressure. Anesthesiology 103:306–317

    Article  PubMed  Google Scholar 

  49. Kaczka DW, Brown RH, Mitzner W (2009) Assessment of heterogeneous airway constriction in dogs: a structure-function analysis. J Appl Physiol 106:520–530

    Article  PubMed Central  PubMed  Google Scholar 

  50. Johnson MK, Birch M, Carter R, Kinsella J, Stevenson RD (2005) Use of reactance to estimate transpulmonary resistance. Eur Respir J 25:1061–1069

    Article  CAS  PubMed  Google Scholar 

  51. Dellaca RL, Andersson OM, Zannin E, Kostic P, Pompilio PP, Hedenstierna G et al (2009) Lung recruitment assessed by total respiratory system input reactance. Intensive Care Med 35(12):2164–2172

    Article  PubMed  Google Scholar 

  52. Dellaca RL, Zannin E, Kostic P, Olerud MA, Pompilio PP, Hedenstierna G et al (2011) Optimisation of positive end-expiratory pressure by forced oscillation technique in a lavage model of acute lung injury. Intensive Care Med 37:1021–1030

    Article  PubMed  Google Scholar 

  53. Kostic P, Zannin E, Andersson OM, Pompilio PP, Hedenstierna G, Pedotti A et al (2011) Positive end-expiratory pressure optimization with forced oscillation technique reduces ventilator induced lung injury: a controlled experimental study in pigs with saline lavage lung injury. Crit Care 35(12):2164–2172

    Google Scholar 

  54. McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137:1185–1192

    Article  CAS  PubMed  Google Scholar 

  55. Meredith KS, de Lemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R et al (1989) Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol 66:2150–2158

    CAS  PubMed  Google Scholar 

  56. Froese AB (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome: let’s get it right this time! Crit Care Med 25:906–908

    Article  CAS  PubMed  Google Scholar 

  57. Bond DM, Froese AB (1993) Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-frequency oscillation. Crit Care Med 21:402–412

    Article  CAS  PubMed  Google Scholar 

  58. Dellacà R, Zannin E, Ventura M, Sancini G, Pedotti A, Tagliabue P et al (2013) Assessment of dynamic mechanical properties of the respiratory system during high frequency oscillatory ventilation. Crit Care Med 41:2502–2511

    Article  PubMed  Google Scholar 

  59. Zannin E, Dellaca RL, Kostic P, Pompilio PP, Larsson A, Pedotti A et al (2012) Optimizing positive end-expiratory pressure by oscillatory mechanics minimizes tidal recruitment and distension: an experimental study in a lavage model of lung injury. Crit Care 16:R217

    Article  PubMed Central  PubMed  Google Scholar 

  60. Dorkin HL, Stark AR, Werthammer JW, Strieder DJ, Fredberg JJ, Frantz ID (1983) Respiratory system impedance from 4 to 40 Hz in paralyzed intubated infants with respiratory disease. J Clin Invest 72:903–910

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sullivan KJ, Durand M, Chang HK (1991) A forced perturbation method of assessing pulmonary mechanical function in intubated infants. Pediatr Res 29:82–88

    Article  CAS  PubMed  Google Scholar 

  62. Gauthier R, Beyaert C, Feillet F, Peslin R, Monin P, Marchal F (1998) Respiratory oscillation mechanics in infants with bronchiolitis during mechanical ventilation. Pediatr Pulmonol 25:18–31

    Article  CAS  PubMed  Google Scholar 

  63. Pillow JJ, Sly PD, Hantos Z (2004) Monitoring of lung volume recruitment and derecruitment using oscillatory mechanics during high-frequency oscillatory ventilation in the preterm lamb. Pediatr Crit Care Med 5:172–180

    Article  PubMed  Google Scholar 

  64. Dellaca RL, Veneroni C, Vendettuoli V, Zannin E, Matassa PG, Pedotti A et al (2013) Relationship between respiratory impedance and positive end-expiratory pressure in mechanically ventilated neonates. Intensive Care Med 39:511–519

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele L. Dellacà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Dellacà, R.L., Pompilio, P.P., Farré, R., Navajas, D., Zannin, E. (2014). Use of FOT for Optimising Mechanical Ventilation. In: Aliverti, A., Pedotti, A. (eds) Mechanics of Breathing. Springer, Milano. https://doi.org/10.1007/978-88-470-5647-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5647-3_25

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5646-6

  • Online ISBN: 978-88-470-5647-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics