Skip to main content

Mechanisms of Coronary Microvascular Dysfunction

  • Chapter
  • First Online:
Coronary Microvascular Dysfunction

Abstract

CMD can be sustained by several pathogenetic mechanisms. The importance of these mechanisms appears to vary in different clinical settings, but several of them may coexist in the same condition. Structural abnormalities of small coronary arteries can be responsible for CMD and have been described, in particular, in patients with hypertrophic cardiomyopathy or arterial hypertension. Functional microvascular abnormalities responsible for CMD have been described in most cases, and may consist of impaired coronary microvascular dilatation (endothelium-dependent and/or endothelium-independent) and/or increased coronary microvascular constriction. Finally, extravascular mechanisms, resulting in increased compression of resistive vessels by increased intramural pressure, may also sustain CMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    Article  CAS  PubMed  Google Scholar 

  2. Maron BJ, Wolfson JK, Epstein SE, Roberts WC (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    Article  CAS  PubMed  Google Scholar 

  3. Camici PG, Olivotto I, Rimoldi OE (2012) The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol 52:857–864

    Article  CAS  PubMed  Google Scholar 

  4. Mancini M, Petretto E, Kleinert C et al (2013) Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Res Cardiol 108:316

    Article  PubMed  Google Scholar 

  5. Tanaka M, Fujiwara H, Onodera T et al (1987) Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75:1130–1139

    Article  CAS  PubMed  Google Scholar 

  6. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE (1993) Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 88:993–1003

    Article  CAS  PubMed  Google Scholar 

  7. van Hoeven KH, Factor SM (1990) Endomyocardial biopsy diagnosis of small vessel disease: a clinicopathologic study. Int J Cardiol 26:103–110

    Article  PubMed  Google Scholar 

  8. Dickhout JG, Lee RM (1997) Structural and functional analysis of small arteries from young spontaneously hypertensive rats. Hypertension 29:781–789

    Article  CAS  PubMed  Google Scholar 

  9. Nordborg C, Johansson BB (1980) Morphometric study on cerebral vessels in spontaneously hypertensive rats. Stroke 11:266–270

    Article  CAS  PubMed  Google Scholar 

  10. Rizzoni D, Rodella L, Porteri E et al (2000) Time course of apoptosis in small resistance arteries of spontaneously hypertensive rats. J Hypertens 18:885–891

    Article  CAS  PubMed  Google Scholar 

  11. Smeda JS, Lee RM, Forrest JB (1988) Structural and reactivity alterations of the renal vasculature of spontaneously hypertensive rats prior to and during established hypertension. Circ Res 63:518–533

    Article  CAS  PubMed  Google Scholar 

  12. Jacobsen JC, Mulvany MJ, Holstein-Rathlou NH (2008) A mechanism for arteriolar remodeling based on maintenance of smooth muscle cell activation. Am J Physiol Regul Integr Comp Physiol 294:R1379–R1389

    Article  CAS  PubMed  Google Scholar 

  13. Mulvany MJ (1999) Vascular remodelling of resistance vessels: can we define this? Cardiovasc Res 41:9–13

    Article  CAS  PubMed  Google Scholar 

  14. Schwartzkopff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J Am Coll Cardiol 31:1089–1096

    Article  CAS  PubMed  Google Scholar 

  15. Nalbantgil I, Onder R, Altintig A et al (1998) Therapeutic benefits of cilazapril in patients with syndrome X. Cardiology 89:130–133

    Article  CAS  PubMed  Google Scholar 

  16. Pizzi C, Manfrini O, Fontana F, Bugiardini R (2004) Angiotensin-converting enzyme inhibitors and 3-hydroxy-3-methylglutaryl coenzyme A reductase in cardiac syndrome X: role of superoxide dismutase activity. Circulation 109:53–58

    Article  CAS  PubMed  Google Scholar 

  17. Chen JW, Hsu NW, Wu TC et al (2002) Long-term angiotensin-converting enzyme inhibition reduces plasma asymmetric dimethylarginine and improves endothelial nitric oxide bioavailability and coronary microvascular function in patients with syndrome X. Am J Cardiol 90:974–982

    Article  CAS  PubMed  Google Scholar 

  18. Camici P, Marracini P, Gistri R et al (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8:221–226

    Article  CAS  PubMed  Google Scholar 

  19. Rosen SD, Lorenzoni R, Kaski JC, Foale RA, Camici PG (1999) Effect of alpha1-adrenoceptor blockade on coronary vasodilator reserve in cardiac syndrome X. J Cardiovasc Pharmacol 34:554–560

    Article  CAS  PubMed  Google Scholar 

  20. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

  21. Motz W, Vogt M, Rabenau O, Scheler S, Luckhoff A, Strauer BE (1991) Evidence of endothelial dysfunction in coronary resistance vessels in patients with angina pectoris and normal coronary angiograms. Am J Cardiol 68:996–1003

    Article  CAS  PubMed  Google Scholar 

  22. Chauhan A, Mullins PA, Taylor M, Petch MC, Schofield PM (1997) Both endothelium-dependent and endothelium-independent function is impaired in patients with angina pectoris and normal coronary angiograms. Eur Heart J 18:60–68

    Article  CAS  PubMed  Google Scholar 

  23. Bøttcher M, Bøtker HE, Sonne H, Nielsen TT, Czernin J (1999) Endothelium dependent and independent perfusion reserve and the effect of l-arginine on myocardial perfusion in patients with syndrome X. Circulation 99:1795–1801

    Article  PubMed  Google Scholar 

  24. Desideri G, Gaspardone A, Gentile M, Santucci A, Gioffrè PA, Ferrii C (2000) Endothelial activation in patients with cardiac syndrome X. Circulation 102:2359–2364

    Article  CAS  PubMed  Google Scholar 

  25. Okazaki T, Otani H, Shimazu T et al (2011) Reversal of inducible nitric oxide synthase uncoupling unmasks tolerance to ischemia/reperfusion injury in the diabetic rat heart. J Mol Cell Cardiol 50:534–544

    Article  CAS  PubMed  Google Scholar 

  26. Channon KM (2012) Tetrahydrobiopterin: a vascular redox target to improve endothelial function. Curr Vasc Pharmacol 10:705–708

    Article  CAS  PubMed  Google Scholar 

  27. Roe ND, Ren J (2012) Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul Pharmacol 57:168–172

    Article  CAS  PubMed  Google Scholar 

  28. Adams MR, McCredie R, Jessup W, Robinson J, Sullivan D, Celermajer DS (1997) Oral l-arginine improves endothelium-dependent dilatation and reduces monocyte adhesion to endothelial cells in young men with coronary artery disease. Atherosclerosis 129:261–269

    Article  CAS  PubMed  Google Scholar 

  29. Blum A, Hathaway L, Mincemoyer R et al (2000) Oral l-arginine in patients with coronary artery disease on medical management. Circulation 101:2160–2164

    Article  CAS  PubMed  Google Scholar 

  30. Böger RH (2003) Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med 41:1467–1472

    Article  PubMed  Google Scholar 

  31. Sciacqua A, Grillo N, Quero M, Sesti G, Perticone F (2012) Asymmetric dimethylarginine plasma levels and endothelial function in newly diagnosed type 2 diabetic patients. Int J Mol Sci 13:13804–13815

    Article  CAS  PubMed  Google Scholar 

  32. Dimitroulas T, Sandoo A, Kitas GD (2012) Asymmetric dimethylarginine as a surrogate marker of endothelial dysfunction and cardiovascular risk in patients with systemic rheumatic diseases. Int J Mol Sci 13:12315–12335

    Article  CAS  PubMed  Google Scholar 

  33. Perticone F, Sciacqua A, Maio R et al (2005) Asymmetric dimethylarginine, l-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 46:518–523

    Article  CAS  PubMed  Google Scholar 

  34. Böger RH, Bode-Böger SM, Szuba A et al (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98:1842–1847

    Article  PubMed  Google Scholar 

  35. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    Article  CAS  PubMed  Google Scholar 

  36. White CR, Brock TA, Chang LY et al (1994) Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A 91:1044–1048

    Article  CAS  PubMed  Google Scholar 

  37. Mügge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG (1991) Chronic treatment with polyethylene glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 69:1293–1300

    Article  PubMed  Google Scholar 

  38. Heitzer T, Just H, Munzel T (1996) Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94:6–9

    Article  CAS  PubMed  Google Scholar 

  39. Ting HH, Timimi FK, Boles K, Creager S, Ganz P, Creager MA (1995) Vitamin C acutely improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. Circulation 92(Suppl. 1):1747

    Google Scholar 

  40. Solzbach U, Hornig B, Jeserich M, Just H (1997) Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients. Circulation 96:1513–1519

    Article  CAS  PubMed  Google Scholar 

  41. Evora PR, Evora PM, Celotto AC, Rodrigues AJ, Joviliano EE (2012) Cardiovascular therapeutics targets on the NO-sGC-cGMP signaling pathway: a critical overview. Curr Drug Targets 13:1207–1214

    Article  CAS  PubMed  Google Scholar 

  42. Cohen RA, Vanhoutte PM (1995) Endothelium-dependent hyperpolarization. Beyond nitric oxide and cyclic GMP. Circulation 92:3337–3349

    Article  CAS  PubMed  Google Scholar 

  43. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A (1997) Importance of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest 100:2793–2799

    Article  CAS  PubMed  Google Scholar 

  44. Tsutsui M, Ohya Y, Sugahara K (2012) Latest evidence in endothelium-derived hyperpolarizing factor research. Circ J 76:1599–1600

    Article  CAS  PubMed  Google Scholar 

  45. Eckly-Michel A, Martin V, Lugnier C (1997) Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation. Br J Pharmacol 122:158–164

    Article  CAS  PubMed  Google Scholar 

  46. Murray KJ (1990) Cyclic AMP and mechanisms of vasodilation. Pharmacol Ther 47:329–345

    Article  CAS  PubMed  Google Scholar 

  47. Lincoln TM, Cornwell TL (1993) Intracellular cyclic GMP receptor proteins. FASEB J 7:328–338

    CAS  PubMed  Google Scholar 

  48. Kurz MA, Lamping KG, Bates JN, Eastham CL, Marcus ML, Harrison DG (1991) Mechanisms responsible for the heterogeneous coronary microvascular response to nitroglycerin. Circ Res 68:847–855

    Article  CAS  PubMed  Google Scholar 

  49. Rajendran S, Chirkov YY (2008) Platelet hyperaggregability: impaired responsiveness to nitric oxide (“platelet NO resistance”) as a therapeutic target. Cardiovasc Drugs Ther 22:193–203

    Article  CAS  PubMed  Google Scholar 

  50. Jackson WF (2005) Potassium channels in the peripheral microcirculation. Microcirculation 12:113–127

    Article  CAS  PubMed  Google Scholar 

  51. Sobey CG (2001) Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol 21:28–38

    Article  CAS  PubMed  Google Scholar 

  52. Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF (2003) Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 112:717–724

    CAS  PubMed  Google Scholar 

  53. Liu Y, Terata K, Rusch NJ, Gutterman DD (2001) High glucose impairs voltage-gated K(+) channel current in rat small coronary arteries. Circ Res 89:146–152

    Article  CAS  PubMed  Google Scholar 

  54. Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG (1990) Understanding the coronary circulation through studies at the microvascular level. Circulation 82:1–7

    Article  CAS  PubMed  Google Scholar 

  55. Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. N Engl J Med 323:27–36

    Article  CAS  PubMed  Google Scholar 

  56. Lerman A, Holmes DR, Bell MR et al (1995) Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 92:2426–2431

    Article  CAS  PubMed  Google Scholar 

  57. Ohta H, Suzuki J, Akima T, Kawai N, Hanada K, Nishikibe M (1998) Hemodynamic effect of endothelin antagonists in dogs with myocardial infarction. J Cardiovasc Pharmacol 31(Suppl 1):S255–S257

    Article  CAS  PubMed  Google Scholar 

  58. Johannsen UJ, Mark AL, Marcus ML (1982) Responsiveness to cardiac sympathetic nerve stimulation during maximal coronary dilation produced by adenosine. Circ Res 50:510–517

    Article  CAS  PubMed  Google Scholar 

  59. Gillespie MN, Booth DC, Friedman BJ, Cunningham MR, Jay M, DeMaria AN (1988) fMLP provokes coronary vasoconstriction and myocardial ischemia in rabbits. Am J Physiol 254:H481–H486

    CAS  PubMed  Google Scholar 

  60. Clarke JG, Davies GJ, Kerwin R et al (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1:1057–1059

    Article  CAS  PubMed  Google Scholar 

  61. Ong P, Athanasiadis A, Mahrholdt H, Borgulya G, Sechtem U, Kaski JC (2012) Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clin Res Cardiol 101:673–681

    Article  CAS  PubMed  Google Scholar 

  62. Matsuda K, Teragawa H, Fukuda Y et al (2003) Response of the left anterior descending coronary artery to acetylcholine in patients with chest pain and angiographically normal coronary arteries. Am J Cardiol 92:1394–1398

    Article  CAS  PubMed  Google Scholar 

  63. McFadden EP, Clarke JG, Davies GJ, Kaski JC, Haider AW, Maseri A (1991) Effect of intracoronary serotonin on coronary vessels in patients with stable angina and patients with variant angina. N Engl J Med 324:648–654

    Article  CAS  PubMed  Google Scholar 

  64. Chauhan A, Mullins PA, Taylor G, Petch MC, Schofield PM (1993) Effect of hyperventilation and mental stress on coronary blood flow in syndrome X. Br Heart J 69:516–524

    Article  CAS  PubMed  Google Scholar 

  65. Sambuceti G, Marzilli M, Mari A et al (2005) Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium. Am J Physiol Heart Circ Physiol 288:H2298–H2305

    Article  CAS  PubMed  Google Scholar 

  66. Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35:327–334

    Article  CAS  PubMed  Google Scholar 

  67. Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD (2003) Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 146:84–90

    Article  PubMed  Google Scholar 

  68. Yilmaz A, Mahrholdt H, Athanasiadis A et al (2008) Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart 94:1456–1463

    Article  CAS  PubMed  Google Scholar 

  69. Lamendola P, Di Franco A, Tarzia P, Milo M, Laurito M, Lanza GA (2011) Coronary microvascular dysfunction. An update. Recenti Prog Med 102:329–337

    PubMed  Google Scholar 

  70. Rezkalla SH, Kloner RA (2008) Coronary no-reflow phenomenon: from the experimental laboratory to the cardiac catheterization laboratory. Catheter Cardiovasc Interv 72:950–957

    Article  PubMed  Google Scholar 

  71. Eeckhout E, Kern MJ (2001) The coronary no-reflow phenomenon: a review of mechanisms and therapies. Eur Heart J 22:729–739

    Article  CAS  PubMed  Google Scholar 

  72. Porto I, Belloni F, Niccoli G et al (2011) Filter no-reflow during percutaneous coronary intervention of saphenous vein grafts: incidence, predictors and effect of the type of protection device. EuroIntervention 7:955–961

    Article  PubMed  Google Scholar 

  73. Corbalán R, Larrain G, Nazzal C et al (2001) Association of noninvasive markers of coronary artery reperfusion to assess microvascular obstruction in patients with acute myocardial infarction treated with primary angioplasty. Am J Cardiol 88:342–346

    Article  PubMed  Google Scholar 

  74. Jaffe R, Dick A, Strauss BH (2010) Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention: a systematic approach. JACC Cardiovasc Interv 3:695–704

    Article  PubMed  Google Scholar 

  75. Niccoli G, Burzotta F, Galiuto L, Crea F (2009) Myocardial no-reflow in humans. J Am Coll Cardiol 54:281–292

    Article  PubMed  Google Scholar 

  76. Inoue K, Hamada M, Ohtsuka T et al (2004) Myocardial microvascular abnormalities observed by intravenous myocardial contrast echocardiography in patients with hypertrophic cardiomyopathy. Am J Cardiol 94:55–58

    Article  PubMed  Google Scholar 

  77. Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG (1997) Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy: a study with positron emission tomography. Eur Heart J 18:108–116

    Article  CAS  PubMed  Google Scholar 

  78. Cannon RO 3rd, Rosing DR, Maron BJ et al (1985) Myocardial ischaemia in patients with hypertrophic cardiomyopathy: contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures. Circulation 71:234–243

    Article  PubMed  Google Scholar 

  79. Garcia-Dorado D, Andres-Villarreal M, Ruiz-Meana M, Inserte J, Barba I (2012) Myocardial edema: a translational view. J Mol Cell Cardiol 52:931–939

    Article  CAS  PubMed  Google Scholar 

  80. Jaffe R, Charron T, Puley G, Dick A, Strauss BH (2008) Microvascular obstruction and the no-reflow phenomenon after percutaneous coronary intervention. Circulation 117:3152–3156

    Article  PubMed  Google Scholar 

  81. Bekkers SC, Yazdani SK, Virmani R, Waltenberger J (2010) Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J Am Coll Cardiol 55:1649–1660

    Article  PubMed  Google Scholar 

  82. Chitwood WR Jr, Sink JD, Hill RC, Wechsler AS, Sabiston DC Jr (1979) The effects of hypothermia on myocardial oxygen consumption and transmural coronary blood flow in the potassium-arrested heart. Ann Surg 190:106–116

    Article  PubMed  Google Scholar 

  83. Friedrich MG, Abdel-Aty H, Taylor A, Schulz-Menger J, Messroghli D, Dietz R (2008) The salvaged area at risk in reperfused acute myocardial infarction as visualized by cardiovascular magnetic resonance. J Am Coll Cardiol 51:1581–1587

    Article  PubMed  Google Scholar 

  84. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Crea .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Italia

About this chapter

Cite this chapter

Crea, F., Lanza, G.A., Camici, P.G. (2014). Mechanisms of Coronary Microvascular Dysfunction. In: Coronary Microvascular Dysfunction. Springer, Milano. https://doi.org/10.1007/978-88-470-5367-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5367-0_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5366-3

  • Online ISBN: 978-88-470-5367-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics