Skip to main content

Wrist Biomechanics

  • Chapter
  • First Online:
Fracture-Dislocations of the Wrist
  • 1970 Accesses

Abstract

This chapter analyzes the wrist joint and the carpal pulley from a kinematic and a kinetic perspective. The wrist is often described as the least important articulation of the upper limb; a joint that can be fused without generating great distress to the patient. This is only partly true, since without a mobile wrist, there is no precision in placing the hand where is required to manipulate an object. Several mechanical models have been hypothesized to explain wrist function: it is not only the result of a perfect mechanical interaction between moving bones and soft tissue constraints, but also the consequence of a complex system of ligament-muscle reflexes mediating its dynamic muscle stabilization. The wrist is not only a complicated composite joint allowing large range of motion; the wrist is also a load bearing articulation. Aside from this role, the wrist is also an important pulley to enhance finger function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia-Elias M (1999) Anatomy and biomechanics committee of the international federation of societies for surgery of the hand. Definition of carpal instability. J Hand Surg Am 24(4):866–867

    Google Scholar 

  2. Kijima Y, Viegas SF (2009) Wrist anatomy and biomechanics. J Hand Surg Am 34(8):1555–1563

    Article  PubMed  Google Scholar 

  3. Adey L, Ring D, Jupiter JB (2005) Health status after total wrist arthrodesis for posttraumatic arthritis. J Hand Surg Am 30(5):932–936

    Article  PubMed  Google Scholar 

  4. Nelson DL (1997) Functional wrist motion. Hand Clin 13(1):83–92

    PubMed  CAS  Google Scholar 

  5. Li ZM (2002) The influence of wrist position on individual finger forces during forceful grip. J Hand Surg Am 27(5):886–896

    Article  PubMed  Google Scholar 

  6. Garcia-Elias M (2011) Carpal instability. In: Wolfe S, Hotchkiss R, Pederson W, Kozin S (eds) Green’s operative hand surgery, 6th edn. Churchill, Livingstone, Elsevier, Philadelphia, pp 465–521

    Google Scholar 

  7. Lichtman DM, Schneider JR, Swafford AR, Mack GR (1981) Ulnar midcarpal instability—clinical and laboratory analysis. J Hand Surg 6(5):515–523

    Article  CAS  Google Scholar 

  8. Riemann BL, Lephart SM (2002) The sensorimotor system, part I: the physiologic basis of functional joint stability. J Athl Train 37(1):71–79

    PubMed  Google Scholar 

  9. Hagert E (2010) Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist. J Hand Ther 23(1):2–16

    Article  PubMed  Google Scholar 

  10. Kobayashi M, Berger RA, Nagy L et al (1997) Normal kinematics of carpal bones: a three-dimensional analysis of carpal bone motion relative to the radius. J Biomech 30(8):787–793

    Article  PubMed  CAS  Google Scholar 

  11. Moojen TM, Snel JG, Ritt MJ, Venema HW, Kauer JM, Bos KE (2003) In vivo analysis of carpal kinematics and comparative review of the literature. J Hand Surg Am 28(1):81–87

    Article  PubMed  Google Scholar 

  12. Werner FW, Green JK, Short WH, Masaoka S (2004) Scaphoid and lunate motion during a wrist dart throw motion. J Hand Surg Am 29(3):418–422

    Article  PubMed  Google Scholar 

  13. Kaufmann R, Pfaeffle J, Blankenhorn B, Stabile K, Robertson D, Goitz R (2005) Kinematics of the midcarpal and radiocarpal joints in radioulnar deviation: an in vitro study. J Hand Surg Am 30(5):937–942

    Article  PubMed  Google Scholar 

  14. Crisco JJ, Coburn JC, Moore DC, Akelman E, Weiss AP, Wolfe SW (2005) In vivo radiocarpal kinematics and the dart thrower’s motion. J Bone Joint Surg Am 87(12):2729–2740

    Article  PubMed  Google Scholar 

  15. Feipel V, Rooze M (1999) Three-dimensional motion patterns of the carpal bones: an in vivo study using three-dimensional computed tomography and clinical applications. Surg Radiol Anat 21(2):125–131

    Article  PubMed  CAS  Google Scholar 

  16. Craigen MAC, Stanley JK (1995) Wrist kinematics. Row, column or both? J Hand Surg Br 20(2):165–170

    Google Scholar 

  17. Galley I, Bain GI, McLean JM (2007) Influence of lunate type on scaphoid kinematics. J Hand Surg Am 32(6):842–847

    Article  PubMed  Google Scholar 

  18. An KN, Chao EY, Cooney WP, Linscheid RL (1985) Forces in the normal and abnormal hand. J Orthop Res 3(2):202–211

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Elias M (1997) Kinetic analysis of carpal stability during grip. Hand Clin 13(1):151–158

    PubMed  CAS  Google Scholar 

  20. Rikli DA, Honigmann P, Babst R, Cristalli A, Morlock MM, Mittlmeier T (2007) Intra-articular pressure measurement in the radioulnocarpal joint using a novel sensor: in vitro and in vivo results. J Hand Surg Am 32(1):67–75

    Article  PubMed  Google Scholar 

  21. O’Driscoll SW, Horii E, Ness R et al (1992) The relationship between wrist position, grasp size, and grip strength. J Hand Surg Am 17(1):169–177

    Article  PubMed  Google Scholar 

  22. Majima M, Horii E, Matsuki H, Hirata H, Genda E (2008) Load transmission through the wrist in the extended position. J Hand Surg Am 33(2):182–188

    Article  PubMed  Google Scholar 

  23. Kang HJ, Lee SG, Phillips CS, Mass DP (1996) Biomechanical changes of cadaveric finger flexion: the effect of wrist position and of the transverse carpal ligament and palmar and forearm fasciae. J Hand Surg Am 21(6):963–968

    Article  PubMed  CAS  Google Scholar 

  24. Netscher D, Lee M, Thronby J, Polsen C (1997) The effect of division of the transverse carpal ligament on flexor tendon excursion. J Hand Surg Am 22(6):1016–1024

    Article  PubMed  CAS  Google Scholar 

  25. Salvà-Coll G, Garcia-Elias M, Leon-Lopez MT, Llusa-Perez M, Rodríguez-Baeza A (2011) Effects of forearm muscles on carpal stability. J Hand Surg Eur 36:553–559

    Google Scholar 

  26. Corson ER (1897) X-ray study of normal movements of the carpal bones and wrist. Proc Assoc Am Anat, Session 11th pp 67–92

    Google Scholar 

  27. Fisk GR (1980) La biomécanique de l’articulation du poignet. In: Tubiana R (ed) Traité de Chirurgie de la Main, Masson, Paris, pp 171–176

    Google Scholar 

  28. Saffar Ph, Seumaan I (1994) The study of the biomechanics of wrist movements in an oblique plain. In: Schuind F, An KN, Cooney WP, Garcia-Elias M (eds) Advances in the biomechanics of the hand and wrist. Plenum press, New York, pp 305–311

    Chapter  Google Scholar 

  29. Moritomo H, Apergis EP, Herzberg G, Werner FW, Wolfe SW, Garcia-Elias M (2007) 2007 IFSSH committee report of wrist biomechanics committee: biomechanics of the so-called dart-throwing motion of the wrist. J Hand Surg Am 32(9):1447–1453

    Article  PubMed  Google Scholar 

  30. Brand PW, Hollister A (1993) Mechanics of individual muscles at individual joints. In: Brand PW, Hollister A (eds) Clinical mechanics of the hand, 2nd edn. St. Louis Mosby Year Book, pp 254–352

    Google Scholar 

  31. Ryu J, Cooney WP, Askew LJ, An KN, Chao EYS (1991) Functional ranges of motion of the wrist joint. J Hand Surg Am 16(3):409–419

    Article  PubMed  CAS  Google Scholar 

  32. Garcia-Elias M, Sanchez-Freijo JM, Salo JM, Lluch AL (1992) Dynamic changes of the transverse carpal arch during flexion-extension of the wrist: effects of sectioning the transverse carpal ligament. J Hand Surg Am 17(6):1017–1019

    Article  PubMed  CAS  Google Scholar 

  33. Kauer JMG (1986) The mechanism of the carpal joint. Clin Orthop Rel Res 202:16–26

    Google Scholar 

  34. Ritt MJPF, Linscheid RL, Cooney WP, Berger RA, An KN (1998) The lunotriquetral joint: kinematic effects of sequential ligament sectioning, ligament repair, and arthrodesis. J Hand Surg Am 23(3):432–445

    Article  PubMed  CAS  Google Scholar 

  35. Neu CP, Crisco JJ, Wolfe SW (2001) In vivo kinematic behaviour of the radio-capitate joint during wrist flexion-extension and radio-ulnar deviation. J Biomech 34(11):1429–1438

    Article  PubMed  CAS  Google Scholar 

  36. Kaufmann RA, Pfaeffle HJ, Blankenhorn BD, Stabile K, Robertson D, Goitz R (2006) Kinematics of the midcarpal and radiocarpal joint in flexion and extension: an in vitro study. J Hand Surg Am 31(7):1142–1148

    Article  PubMed  Google Scholar 

  37. Garcia-Elias M, Orsolini C (2011) Relationship between thumb laxity and trapezium kinematics. Chir Main 30(3):224–227

    Article  PubMed  CAS  Google Scholar 

  38. Garcia-Elias M, Ribe M, Rodriguez J, Cots M, Casas J (1995) Influence of joint laxity on scaphoid kinematics. J Hand Surg Br 20(3):379–382

    Article  PubMed  CAS  Google Scholar 

  39. Ishikawa JI, Cooney WP, Niebur G et al (1999) The effects of wrist distraction on carpal kinematics. J Hand Surg Am 24(1):113–120

    Article  PubMed  CAS  Google Scholar 

  40. Ritt MJPF, Stuart PR, Berglund LJ et al (1995) Rotational stability of the carpus relative to the forearm. J Hand Surg Am 20(2):305–311

    Article  PubMed  CAS  Google Scholar 

  41. Ritt MJPF, Stuart PR, Berglund LJ et al. (1996) Rotational laxity and stiffness of the radiocarpal joint. Clin Biomech (Bristol, Avon) 11(4):227–232

    Google Scholar 

  42. Viegas SF, Patterson RM (1997) Load mechanics of the wrist. Hand Clin 13(1):109–128

    PubMed  CAS  Google Scholar 

  43. Hara T, Horii E, An KN et al (1992) Force distribution across wrist joint: application of pressure-sensitive conductive rubber. J Hand Surg Am 17(2):339–347

    Article  PubMed  CAS  Google Scholar 

  44. Werner FW, An KN, Palmer AK, Chao EYS (1991) Force analysis. In: An KN, Berger RA, Cooney WP (eds) Biomechanics of the wrist joint. Springer, New York, pp 77–97

    Chapter  Google Scholar 

  45. Garcia-Elias M, An KN, Cooney WP et al (1989) Stability of the transverse carpal arch: an experimental study. J Hand Surg Am 14(2):277–281

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Elias M, Dobyns JH, Cooney WP et al (1989) Traumatic axial dislocations of the carpus. J Hand Surg Am 14(3):446–457

    Article  PubMed  CAS  Google Scholar 

  47. Short WH, Werner FW, Green JK, Masaoka S (2005) Biomechanical evaluation of the ligamentous stabilizers of the scaphoid and lunate. Part II. J Hand Surg Am 30(1):24–34

    Article  PubMed  Google Scholar 

  48. Linscheid RL, Dobyns JH, Beabout JM, Brian RS (1972) Traumatic instability of the wrist: diagnosis, classification and pathomechanics. J Bone Joint Surg Am 54(8):1612–1632

    PubMed  CAS  Google Scholar 

  49. Kobayashi M, Garcia-Elias M, Nagy L et al (1999) Axial loading induces rotation of the proximal carpal row bones around unique screw-displacement axes. J Biomech 30(11–12):1165–1167

    Google Scholar 

  50. Tang JB, Ryu J, Omokawa S, Wearden S (2002) Wrist kinetics after scapholunate dissociation: the effect of scapholunate interosseous ligament injury and persistent scapholunate gaps. J Orthop Res 20(2):215–221

    Article  PubMed  Google Scholar 

  51. Shin AY, Battaglia MJ, Bishop AT (2000) Lunotriquetral instability: diagnosis and treatment. J Am Acad Orthop Surg 8(3):170–179

    PubMed  CAS  Google Scholar 

  52. Rayhack JM, Linscheid RL, Dobyns JH, Smith JH (1987) Post-traumatic ulnar translation of the carpus. J Hand Surg Am 12(2):180–189

    Article  PubMed  CAS  Google Scholar 

  53. Berger RA, Imaeda T, Berglund L, An KN (1999) Constraint and material properties of the subregions of the scapholunate interosseous ligament. J Hand Surg Am 24(5):953–962

    Article  PubMed  CAS  Google Scholar 

  54. Petrie S, Collins J, Solomonow M, Wink C, Chuinard R (1997) Mechanoreceptors in the palmar wrist ligaments. J Bone Joint Surg Br 79(3):494–496

    Article  PubMed  CAS  Google Scholar 

  55. Hagert E, Garcia-Elias M, Forsgren S, Ljung BO (2007) Immunohistochemical analysis of wrist ligament innervation in relation to their structural composition. J Hand Surg Am 32(1):30–36

    Article  PubMed  Google Scholar 

  56. Lin YT, Berger RA, Berger EJ, Tomita K, Jew JY, Yang C, An KN (2006) Nerve endings of the wrist joint: a preliminary report of the dorsal radiocarpal ligament. J Orthop Res 24(6):1225–1230

    Article  PubMed  Google Scholar 

  57. Mataliotakis G, Doukas M, Kostas I, Lykissas M, Batistatou A, Beris A (2009) Sensory innervation of the subregions of the scapholunate interosseous ligament in relation to their structural composition. J Hand Surg Am 34(8):1413–1421

    Article  PubMed  CAS  Google Scholar 

  58. Hagert E, Persson JK, Werner M, Ljung BO (2009) Evidence of wrist proprioceptive reflexes elicited after stimulation of the scapholunate interosseous ligament. J Hand Surg Am 34(4):642–651

    Article  PubMed  Google Scholar 

  59. Hagert E, Persson JK (2010) Desensitizing the posterior interosseous nerve alters wrist proprioceptive reflexes. J Hand Surg Am 35(7):1059–1066

    Article  PubMed  Google Scholar 

  60. Patterson RW, Van Niel M, Shimko P, Pace C, Seitz WH Jr (2010) Proprioception of the wrist following posterior interosseous sensory neurectomy. J Hand Surg Am 35(1):52–56

    Article  PubMed  Google Scholar 

  61. Gay A, Harbst K, Hansen DK, Laskowski ER, Berger RA, Kaufman KR (2011) Effect of partial wrist denervation on wrist kinesthesia: wrist denervation does not impair proprioception. J Hand Surg Am 36(11):1774–1779

    Article  PubMed  Google Scholar 

  62. Salva Coll G, Garcia-Elias M, Llusá Pérez M, Rodriguez Baeza A (2011) The role of the flexor carpi radialis muscle in scapholunate instability. J Hand Surg Am 36(1):31–36

    Article  PubMed  CAS  Google Scholar 

  63. Salva Coll G, Garcia-Elias M, Leon Lopez M, lusá Pérez M, Rodriguez Baeza A (2012) Role of the extensor carpi ulnaris and its sheath on dynamic carpal stability. J Hand Surg Eur 37(6):544–548

    CAS  Google Scholar 

  64. Apergis E (2004) καταγματα-εξαρθρήματα του καρπου. Konstantaras Medical Books, Athens

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Garcia-Elias .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Garcia-Elias, M. (2013). Wrist Biomechanics. In: Fracture-Dislocations of the Wrist. Springer, Milano. https://doi.org/10.1007/978-88-470-5328-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5328-1_3

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5327-4

  • Online ISBN: 978-88-470-5328-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics