Skip to main content

Normal Development

  • Chapter
Perinatal Neuroradiology

Abstract

Fetal MR imaging covers a relatively long period of the fetal brain development: from approximately 18–19 gestational weeks (GW) until birth. Therefore, at present, it is possible to study More than ahalf of the entire gestational periodby this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag G, Hassan M (2001) Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol 22:184–189

    CAS  PubMed  Google Scholar 

  2. Garel C, Chantrel E, Elmaleh M, Brisse H, Sebag G (2003) Fetal MRI: normal gestational landmarks for cerebral biometry, gyration and myelination. Childs Nerv Syst 19:422–425

    Article  PubMed  Google Scholar 

  3. Garel C (2004) The role of MRI in the evaluation of the fetal brain with an emphasis on biometry, gyration and parenchyma. Pediatr Radiol 34:694–699

    Article  PubMed  Google Scholar 

  4. Garel C (2005) Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol 15:809–813

    Article  CAS  PubMed  Google Scholar 

  5. Tilea B, Alberti C, Adamsbaum C, Armoogum P, Oury JF, Cabrol D, Sebag G, Kalifa G, Garel C (2009) Cerebral biometry in fetal magnetic resonance imaging: new reference data. Ultrasound Obstet Gynecol 33:173–181

    Article  CAS  PubMed  Google Scholar 

  6. Parazzini C, Righini A, Rustico M, Consonni D, Triulzi F (2008) Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology 50:877–883

    Article  CAS  PubMed  Google Scholar 

  7. Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62:26–34

    Article  PubMed Central  PubMed  Google Scholar 

  8. Thayyil S, Sebire NJ, Chitty LS, Wade A, Chong W, Olsen O, Gunny RS, Offiah AC, Owens CM, Saunders DE, Scott RJ, Jones R, Norman W, Addison S, Bainbridge A, Cady EB, Vita ED, Robertson NJ, Taylor AM, MARIAS Collaborative Group (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233

    Article  PubMed  Google Scholar 

  9. Petrén-Mallmin M (1994) Clinical and experimental imaging of breast cancer metastases in the spine. Acta Radiol Suppl 391:1–23

    PubMed  Google Scholar 

  10. Lequin MH, Huisman TA (2012) Postmortem MR imaging in the fetal and neonatal period. Magn Reson Imaging Clin N Am 20:129–143

    Article  PubMed  Google Scholar 

  11. Kostovic I, Vasung L (2009) Insights from in vitro fetal magnetic resonance imaging of cerebral development. Semin Perinatol 33:220–233

    Article  PubMed  Google Scholar 

  12. Wansapura JP, Holland SK, Dunn RS, Ball WS Jr (1999) NMR relaxation times in the human brain at 3.0 tesla. J Magn Reson Imaging 9:531–538

    Article  CAS  PubMed  Google Scholar 

  13. Williams LA, DeVito TJ, Winter JD, Orr TN, Thompson RT, Gelman N (2007) Optimization of 3D MP-RAGE for neonatal brain imaging at 3.0 T. Magn Reson Imaging 25:1162–1170

    Article  PubMed  Google Scholar 

  14. McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987) Developmental features of the neonatal brain: MR imaging. Part I. Gray-white matter differentiation and myelination. Radiology 162:223–229

    Article  CAS  PubMed  Google Scholar 

  15. Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180

    Article  CAS  PubMed  Google Scholar 

  16. Triulzi F, Parazzini C, Righini A (2006) Patterns of damage in the mature neonatal brain. Pediatr Radiol 36:608–620

    Article  PubMed  Google Scholar 

  17. Parazzini C, Bianchini E, Triulzi F (2005) Myelination. In: Tortori Donati P, Rossi A (eds) Pediatric neuroradiology. Springer, Berlin, pp 21–40

    Google Scholar 

  18. Barkovich AJ, Murkherje P (2012) Normal development of the neonatal and infant brain, skull, and spine. In: Barkovich AJ, Raybaud CH (eds) Pediatric neuroimaging, 5th edn LWW, pp 20-80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Triulzi .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Italia

About this chapter

Cite this chapter

Triulzi, F., Scola, E., Avignone, S. (2016). Normal Development. In: Perinatal Neuroradiology. Springer, Milano. https://doi.org/10.1007/978-88-470-5325-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-5325-0_1

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-5324-3

  • Online ISBN: 978-88-470-5325-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics