Skip to main content

Static and dynamic behaviour of the respiratory system

  • Chapter
Applied Physiology in Respiratory Mechanics

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

Abstract

In this chapter only the most fundamental aspects of respiratory mechanics in normal humans are considered; detailed accounts can be found elsewhere in the literature [1–6]. The first section deals with the pressures exerted by the passive respiratory system and the respiratory muscles under static conditions and the second the pressures which develop with the breathing movements (dynamics).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostoni E, Mead J (1964) Statics of the respiratory system. In: Fenn WO, Rahn H (eds) Handbook of Physiology, Section 3, Respiration. vol. I, chapt.13. American Physiological Society, Washington D.C., pp 387–409

    Google Scholar 

  2. Mead J, Agostoni E (1964) Dynamics of breathing. In: Fenn WO, Rahn H (eds) Handbook of Physiology, Section 3, Respiration. vol. I, chapt.14. American Physiological Society, Washington D.C., pp 411–427

    Google Scholar 

  3. Agostoni E, D’Angelo E (1985) Statics of the chest wall. In: Roussos C, Macklem PT (eds) The Thorax, M Dekker, New York, pp 259–295

    Google Scholar 

  4. Mead J, Smith JC, Loring SH (1985)Volume displacements of the chest wall and their mechanical significance. In: Roussos C, Macklem PT (eds) The Thorax, M Dekker, New York, pp 369–392

    Google Scholar 

  5. Agostoni E, Hyatt R (1986) Static behavior of the respiratory system. In: Macklem Pi, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing, Section 3, vol. III, chapt. 9. American Physiological Society, Bethesda, pp 113–130

    Google Scholar 

  6. Rodarte JR, Rehder K (1986) Dynamics of Respiration. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of breathing. Section 3, vol. 11l. American Physiological Society, Washington D.C., pp 131–144

    Google Scholar 

  7. Heaf PJD, Prime FJ (1956) The compliance of the thorax in normal human subjects. Clin Sci 15: 319–327.

    PubMed  CAS  Google Scholar 

  8. Rehder K, Marsh HM (1986) Respiratory mechanics during anesthesia and mechanical ventilation. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing. Section 3, vol. III, chapt. 43. American Physiological Society, Bethesda, pp 737–752

    Google Scholar 

  9. Milic-Emili J (1984) Measurements of pressures in respiratory physiology. In: Otis AB (ed) Techniques in Life Sciences, vol. P4/JI, Elsevier, Amsterdam, pp 412: 1–22

    Google Scholar 

  10. D’Angelo E (1984) Techniques for studying the mechanics of the pleural space. In: AB Otis (ed) Techniques in Life Sciences, vol. P4/II Elsevier, Amsterdam, pp 415: 1–32

    Google Scholar 

  11. Agostoni E (1986) Mechanics of the pleural space. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing. Section 3, vol. III, chapt. 30, American Physiological Society, Bethesda, pp 531–560

    Google Scholar 

  12. Gil J, Weibel ER (1972) Morphological study of pressure-volume hysteresis in rat lungs fixed by vascular perfusion. Respir Physiol 15: 190–213

    Article  PubMed  CAS  Google Scholar 

  13. Buchthal F, Rosenfalck P (1957) Elastic properties of striated muscles. In: Remington JW (ed) Tissue Elasticity. American Physiological Society, Washington DC, pp 73–93

    Google Scholar 

  14. Rodarte JR, Burgher W, Hyatt RE, Rehder K (1977) Lung recoil and gas trapping during oxygen breathing at low lung volumes. J Appl Physiol 43: 138–143

    PubMed  CAS  Google Scholar 

  15. Jonson B, Beydon L, Brauer K, Manson C, Valid S, Grytzell H (1993) Mechanics of respiratory system in healthy anesthetized humans with emphasis on viscolestaic properties. J Appl Physiol 75: 132–140

    PubMed  CAS  Google Scholar 

  16. Leith DE, Bradley M (1976) Ventilatory muscle strength and endurance training. J Appl Physiol 41: 508–516

    PubMed  CAS  Google Scholar 

  17. Agostoni E, Fenn WO (1960) Velocity of muscle shortening as a limiting factor in respiratory air flow. J Appl Physiol 15: 349–353

    PubMed  CAS  Google Scholar 

  18. Jaeger MJ, Otis AB (1964) Effects of compressibility of alveolar gas on dynamics and work of breathing. J Appl Physiol 19: 83–91

    PubMed  CAS  Google Scholar 

  19. Goldman MD, Grimby G, Mead J (1976) Mechanical work of breathing derived from rib cage and abdominal V-P partitioning. J Appl Physiol 41: 752–763

    PubMed  CAS  Google Scholar 

  20. Rohrer F (1915) Der Stromungswiderstand in den menschlichen Atemwegen and der Einfluß der unregelmässigen Verzweigung des Bronchialsystems auf den Atmungsverlaud verschiedenen Lungenbezirken. Arch Gesamte Physiol Mens Tiere 162: 225–299

    Article  Google Scholar 

  21. Neergaard K von, Wirz K (1927) Die Messung der Stromungswiederstände in der Atemwege des Menschen, insbesondere bein Asthma and Emphysema. Zeitschrift für Klinische Medizin 195: 51–82

    Google Scholar 

  22. DuBois AB, Botelho SY, Comroe JH jr (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Invest 35: 322–326

    Article  PubMed  CAS  Google Scholar 

  23. Briscoe WA, DuBois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37: 1279–1285

    Article  PubMed  CAS  Google Scholar 

  24. Mead J, Whittenberger JL (1954) Evaluation of airway interruption technique as a method for measuring pulmonary air-flow resistance. J Appl Physiol 6: 408–416

    PubMed  CAS  Google Scholar 

  25. D’Angelo E, Prandi E, Tavola M, Calderini E, Milic-Emili J (1994) Chest wall interrupter resistance in anesthetized paralyzed humans. J Appl Physiol 77

    Google Scholar 

  26. Liistro GD, Stanescu D, Rodenstein D, Veriter C (1989) Reassessment of the interruption technique for measuring flow resistance in humans. J Appl Physiol 67: 933–937

    PubMed  CAS  Google Scholar 

  27. Bates JHT, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64: 2204–2214

    PubMed  CAS  Google Scholar 

  28. D’Angelo E, Robatto FM, Calderini E, et al (1991) Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 70: 2602–2610

    PubMed  Google Scholar 

  29. Hoppin FG, Stothert JC, Greaves IA, Lai YL, Hilderbrandt J (1986) Lung recoil: elastic and rheological properties. In: Macklem PT, Mead J (eds) Handbook of Physiology. The Respiratory System, Mechanics of Breathing. Section 3, vol. III, chapt. 3. American Physiological Society, Bethesda, pp 195–216

    Google Scholar 

  30. D’Angelo E, Calderini E, Torri G, Robatto F, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized-paralyzed humans: effects of flow, volume and time. J Appl Physiol 67: 2556–2564

    PubMed  Google Scholar 

  31. D’Angelo E, Calderini E, Tavola M, Bono D, Milic-Emili J (1992) Effect of PEEP on respiratory mechanics in anesthetized paralyzed humans. J Appl Physiol 73: 1736–1742

    PubMed  Google Scholar 

  32. D’Angelo E, Prandi E, Milic-Emili J. Dependence of maximal flow-volume curves on time-course of preceding inspiration. J Appl Physiol 75: 1155–1159

    Google Scholar 

  33. Chelucci GL, Brunet F, Dall’Ava-Santucci J et al (1991) A single-compartment model cannot describe passive expiration in intubated, paralysed humans. Eur Respir J4: 458–464

    CAS  Google Scholar 

  34. Mcllroy MB, Tierney DF, Nadel JA (1963) A new method of measurement of compliance and resistance of lungs and thorax. J Appl Physiol 18: 424–427

    Google Scholar 

  35. Zin WA, Pengelly LD, Milic-Emili J (1982) Single-breath method for measurement of respiratory system mechanics in anesthetized animals. J Appl Physiol 52: 1266–1271

    PubMed  CAS  Google Scholar 

  36. Otis AB, McKerrow CB, Bartlett RA et al (1956) Mechanical factors in distribution of pulmonary ventilation. J Appl Physiol 8: 427–443

    PubMed  CAS  Google Scholar 

  37. Mead J, Whittenberger JL (1953) Physical properties of human lungs measured during spontaneous respiration. J Appl Physiol 5: 779–796

    Google Scholar 

  38. Peslin R, Felicio da Silva J, Chabot F, Duvivier C (1992) Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. Eur Respir J 5: 871–878

    PubMed  CAS  Google Scholar 

  39. Hantos Z, Daroczy B, Suki B, Galgoczy G, Csendes T (1986) Forced oscillatory impedance of the respiratory system at low frequencies. J Appl Physiol 60: 123–132

    Article  PubMed  CAS  Google Scholar 

  40. Barnas GM, Yoshiro K, Loring STL, Mead J (1987) Impedance and relative displacements of relaxed chest wall up to 4 Hz. J Appl Physiol 62: 71–81

    PubMed  CAS  Google Scholar 

  41. Barnas GM, Yoshiro K, Stamenovic D, Kikuchi Y, Loring SH, Mead J (1989) Chest wall impedance partitioned into rib-cage and diaphragm-abdominal pathways. J Appl Physiol 66: 350–359

    Article  PubMed  CAS  Google Scholar 

  42. Grimby G, Takishima T, Graham W, Macklem P, Mead J (1968) Frequency dependence of flow resistance in patients with obstructive lung disease. J Clin Invest 47: 1455–1465

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Italia

About this chapter

Cite this chapter

D’Angelo, E. (1998). Static and dynamic behaviour of the respiratory system. In: Milic-Emili, J. (eds) Applied Physiology in Respiratory Mechanics. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2928-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2928-6_4

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2930-9

  • Online ISBN: 978-88-470-2928-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics