Skip to main content

Part of the book series: Topics in Anaesthesia and Critical Care ((TIACC))

  • 106 Accesses

Abstract

The rate of energy expenditure varies during the day, as dictated by the need to regenerate the ATP used in carrying out the body’s metabolic functions, in digesting and storing nutrients, and in moving and performing physical tasks. In the resting state, energy expenditure depends primarily on the size of the lean body mass and on the metabolic costs incurred for processing ingested nutrients. The amount of heat generated is generally sufficient to allow maintenance of body temperature by regulation of heat dissipation, because human subjects can, and generally do, take measures to maintain comfort through appropriate clothing and control of environmental temperatures. Situations where substrate oxidation is activated for the sake of heat production are thus uncommon. The indiscriminant use of the term “thermogenesis” unfortunately creates much confusion.

This publication was made possible in part by grant number DK 33214 from the National Institute of Health. Its contents are solely the responsibility of the author and do not necessarily represent the official views of the National Institute of Health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrand P-O, Rodahl K (1977) Textbook of work physiology, 2nd ed. Mc-Graw Hill, New York.

    Google Scholar 

  2. Kinney JM, Elwyn DH (1983) Protein metabolism and injury. Ann Rev Nutr 3:433–466.

    Article  CAS  Google Scholar 

  3. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL (1950) The biology of human starvation. University of Minnesota, Minneapolis.

    Google Scholar 

  4. Lusk G (1928) The elements of the science of nutrition, 4th ed. WB Saunders, Philadelphia.

    Google Scholar 

  5. Kleiber M (1975) The fire of life and introduction to animal energetics. Krieger, New York.

    Google Scholar 

  6. Jéquier E, Acheson K, Schutz Y (1987) Assessment of energy expenditure and fuel utilization in man. Ann Rev Nutr 7:187–208.

    Article  Google Scholar 

  7. McLean JA (1987) Animal and human calorimetry. Cambridge University Press, Cambridge.

    Google Scholar 

  8. Schoeller DA, Field CR (1991) Human energy metabolism: What we have learned from the doubly labeled water method. Ann Rev Nutr 11:355–373.

    Article  CAS  Google Scholar 

  9. Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72:419–448.

    PubMed  CAS  Google Scholar 

  10. Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: evaluation of errors with special reference to the detailed composition of fuels. Am J Clin Nutr 47:608–623.

    PubMed  CAS  Google Scholar 

  11. Rolfe DFS, Brown GC (1997) Cellular energy utilization and molecular origen of standard metabolic rate in mammals. Physiol Rev 77:731–758.

    PubMed  CAS  Google Scholar 

  12. Pahud P, Ravussin E, Jéquier E (1980) Energy expended during oxygen deficit period of submaximal exercise in man. J Appl Physiol 48:770–775.

    PubMed  CAS  Google Scholar 

  13. Flatt JP, Pahud P, Ravussin E, Jéquier E (1984) An estimate of the P:O ratio in man. TIBS 9:251–255.

    Google Scholar 

  14. Flatt JP (1992) Energy costs of ATP synthesis. In: Kinney JH, Tucker H (eds) Energy metabolism: tissue determinants and cellular corollaries. Raven Press, New York, pp 319–342.

    Google Scholar 

  15. Flatt JP (1970) Conversion of carbohydrate to fat in adipose tissue: an energy-yielding and, therefore, self-limiting process. J Lip Res 11:131–143.

    CAS  Google Scholar 

  16. Acheson KJ, Ravussin E, Wahren J, Jéquier E (1984) Thermic effect of glucose in man, obligatory and facultative thermogenesis. J Clin Invest 74:1572–1580.

    Article  PubMed  CAS  Google Scholar 

  17. Dallosso HM, James WPT (1984) Whole-body calorimetry studies in adult men 1. The effect of fat over-feeding on 24 h energy expenditure. Br J Nutr 52:49–64.

    Article  PubMed  CAS  Google Scholar 

  18. McGilvery RW, Goldstein G (1979) Biochemistry. Functional approach. WB Saunders, Philadelphia.

    Google Scholar 

  19. Flatt JP (1978) The biochemistry of energy expenditure. Rec Adv Obesity Res 2:211–228.

    Google Scholar 

  20. Shaw SN, Elwyn DH, Askanazi J, Iles M, Schwarz Y, Kinney JM (1983) Effects of increasing nitrogen intake on nitrogen balance and energy expenditure in nutritionally depleted adult patients receiving parenteral nutrition. Am J Clin Nutr 37:930–940.

    PubMed  CAS  Google Scholar 

  21. Flatt JP, Tremblay A (1997) Energy expenditure and substrate oxidation. In: Bray GA, Bouchard C, James PT (eds) Handbook of obesity. Marcel Dekker, New York.

    Google Scholar 

  22. Donato KA, Hegsted DM (1985) Efficiency of utilization of various energy sources for growth. Proc Natl Acad Sci 82:4866–4870.

    Article  PubMed  CAS  Google Scholar 

  23. Hurni M, Burnand B, Pittet PH, Jéquier E (1982) Metabolic effects of a mixed and a high-carbohydrate low-fat diet in man, measured over 24 h in a respiration chamber. Br J Nutr 47:33–43.

    Article  PubMed  CAS  Google Scholar 

  24. Abbott WGH, Howard BV, Ruotolo G, Ravussin E (1990) Energy expenditure in humans: effects of dietary fat and carbohydrate. Am J Physiol 258:E347–E351.

    PubMed  CAS  Google Scholar 

  25. Thomas CD, Peters JC, Reed GW, Abumrad NN, Sun M, Hill JO (1992) Nutrient balance and energy expenditure during ad libitum feeding of high fat and high carbohydrate diets in humans. Am J Clin Nutr 55:934–942.

    PubMed  CAS  Google Scholar 

  26. Shetty PS, Prentice AM, Goldberg GR, Murgatroyd PR, McKenna APM et al (1994) Alterations in fuel selection and voluntary food intake in response to isoenergetic manipulation of glycogen stores in humans. Am J Clin Nutr 60:534–543.

    PubMed  CAS  Google Scholar 

  27. Stubbs RJ, Harbron CG, Murgatroyd PR, Prentice AM (1995) Covert manipulation of dietary fat and energy density: effect on substrate flux and food intake in men eating ad libitum. Am J Clin Nutr 62:316–329.

    PubMed  CAS  Google Scholar 

  28. Acheson KJ, Schutz Y, Bessard T, Anantharaman K, Flatt JP, Jéquier E (1988) Glycogen storage capacity and de novo lipogenesis during massive carbohydrate overfeeding in man. Am J Clin Nutr 48:240–247.

    PubMed  CAS  Google Scholar 

  29. Hellerstein MK, Christiansen M, Kaempfer S, Kletke C, Wu K et al (1991) Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J Clin Invest 87:1841–1852.

    Article  PubMed  CAS  Google Scholar 

  30. Acheson KJ, Schutz Y, Bessard T, Ravussin E, Jéquier E, Flatt JP (1984) Nutritional influences on lipogenesis and thermogenesis after a carbohydrate meal. Am J Physiol 246:E62–E70.

    PubMed  CAS  Google Scholar 

  31. Rothwell NJ, Stock MJ (1981) Regulation of energy balance. Ann Rev Nutr 1:235–256.

    Article  CAS  Google Scholar 

  32. Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J et al (1993) Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366:740–742.

    Article  PubMed  CAS  Google Scholar 

  33. Himms-Hagen J (1984) Thermogenesis in brown adipose tissue as an energy buffer: implications for obesity. New Engl J Med 311:1549–1558.

    Article  PubMed  CAS  Google Scholar 

  34. Norgan NG, Durnin JVGA (1980) The effect of 6 weeks of overfeeding on the body weight, body composition, and energy metabolism of young men. Am J Clin Nutr 33:978–988.

    PubMed  CAS  Google Scholar 

  35. Ravussin E, Schutz Y, Acheson KJ, Dusmet M, Bourquin L, Jéquier E (1985) Shortterm, mixed-diet overfeeding in man no evidence for “luxuskonsumption”. Am J Physiol 249:E470–E477.

    PubMed  CAS  Google Scholar 

  36. Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA (1992) Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am J Clin Nutr 56:641–655.

    PubMed  CAS  Google Scholar 

  37. Tremblay A, Coveney S, Després JP, Nadeau A, Prud’homme D (1992) Increased resting metabolic rate and lipid oxidation in exercise-trained individuals: evidence for a role of ß-adrenergic stimulation. Can J Physiol 70:1342–1347.

    Article  CAS  Google Scholar 

  38. Graham TE, Sathasivam P, MacNaughton KW (1991) Influence of cold, exercise, and caffeine on catecholamine and metabolism in men. J Appl Physiol 70:2052–2058.

    Article  PubMed  CAS  Google Scholar 

  39. Buemann B, Astrup A, Christensen N, Madsen J (1992) Effect of moderate cold exposure on 24 h energy expenditure: similar response in postobese and nonobese women. Am J Physiol 263:E1040–E1045.

    PubMed  CAS  Google Scholar 

  40. Owen OE, Holup JL, D’Alessio DA, Craig ES, Polansky M et al (1987) A reappraisal of the caloric requirements of men. Am J Clin Nutr 46:875–885.

    PubMed  CAS  Google Scholar 

  41. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C (1986) Determinants of 24 h energy expenditure in man. J Clin Invest 78:1568–1578.

    Article  PubMed  CAS  Google Scholar 

  42. Elia M (1995) General integration and regulation of metabolism at the organ level. Proc Nutr Soc 54:213–232.

    Article  PubMed  CAS  Google Scholar 

  43. Cahill GF (1970) Starvation in man. N Engl J Med 282:668–675.

    Article  PubMed  CAS  Google Scholar 

  44. Murphy JR (1960) Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med 55:286–302.

    PubMed  CAS  Google Scholar 

  45. Müller MJ (1995) Hepatic fuel selection. Proc Nutr Soc 54:139–150.

    Article  PubMed  Google Scholar 

  46. Coppack SW, Frayn KN, Humphreys SM, Whyte PL, Hockaday TDR (1990) Arteriovenous differences across human adipose and forearm tissues after overnight fast. Metabolism 39:384–390.

    Article  PubMed  CAS  Google Scholar 

  47. Randle PJ, Hales CN, Garland PB, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet i:785–789.

    Article  Google Scholar 

  48. Nuutila P, Koivisto VA, Knuuti J, Ruotsalainen U, Teras M et al (1992) Glucose-free fatty acid cycle operates in human heart and skeletal muscle in vivo. J Clin Invest 89:1767–1744.

    Article  PubMed  CAS  Google Scholar 

  49. Wolfe RR (1990) The role of triglyceride-fatty acid cycling and glucose cycling in thermogenesis and amplification of net substrate flux in human subjects. In: Müller MJ et al (eds) Hormones and nutrition in obesity and cachexia. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  50. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408.

    Article  PubMed  CAS  Google Scholar 

  51. Shulman GI, Ladenson PW, Wolfe MH, Ridgway EC, Wolfe RR (1985) Substrate cycling between gluconeogenesis and glycolysis in euthyroid, hypothyroid, and hyperthyroid in man. J Clin Invest 76:757–764.

    Article  PubMed  CAS  Google Scholar 

  52. Goldstein SA, Elwyn DH (1989) The effects of injury and sepsis on fuel utilization. Ann Rev Nutr 9:445–473.

    Article  CAS  Google Scholar 

  53. Cahill GF Jr (1971) Physiology of insulin in man. Diabetes 20:785–799.

    PubMed  CAS  Google Scholar 

  54. Talke H, Maier KP, Kersten M, Gerok W (1973) Effect of nicatinamide on carbohydrate metabolism in the rat liver during starvation. Eur J Clin Invest 3:467–474.

    Article  PubMed  CAS  Google Scholar 

  55. Flatt JP (1987) Dietary fat, carbohydrate balance, and weight maintenance: effects of exercise. Am J Clin Nutr 45:296–306.

    PubMed  CAS  Google Scholar 

  56. Jéquier E (1992) Calorie balance versus nutrient balance. In: Kinney, JH, Tucker H (eds) Energy Metabolism: Tissue determinants and cellular corollaries. Raven Press, New York, pp 123–134.

    Google Scholar 

  57. Flatt JP (1996) The RQ/FQ concept and weight maintenance. In: Angel A et al (eds) Progress in obesity research, 7. Libbey, pp 49–66.

    Google Scholar 

  58. Beisel WR (1995) Herman Award Lecture, 1995: Infection-induced malnutrition — from cholera to cytokines. Am J Clin Nutr 62:813–819.

    PubMed  CAS  Google Scholar 

  59. Weast RC (1976) Handbook of chemistry and physics, 57th edn. CRC Cleveland, Ohio.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Flatt, J.P. (1999). Energy and ATP: Costs and benefits. In: Guarnieri, G., Iscra, F. (eds) Metabolism and Artificial Nutrition in the Critically Ill. Topics in Anaesthesia and Critical Care. Springer, Milano. https://doi.org/10.1007/978-88-470-2901-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2901-9_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0042-1

  • Online ISBN: 978-88-470-2901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics