Skip to main content

Abstract

The biomechanics of external fixation consist of three inter-related aspects: (1) the relationship between the transosseous elements (wires, half-pins) and the surrounding tissues; (2) the control of bone fragment position; (3) the control of bone fragment rigidity. These are discussed in the following sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beidik OV, Butovsky KG, Ostrovsky NV, Lyasnikov VN (2002) External transosseous osteosynthesis modeling. Tesar-Izdat, Saratov

    Google Scholar 

  2. Karlov AV, Khlusov lA (2000) Adjustable cellular and tissue actions of optimum biomechanics of external fixation devices. In: Proceedings of the scientific-practical conference: RSC “RTO”, vol 2. Kurgan, 2000, pp 185–186

    Google Scholar 

  3. Karlov AV (2003) Regulator mechanisms of optimal biomechanics in external fixation system. Dissertation. RSC “RTO”, Kurgan

    Google Scholar 

  4. Agadzhanian VV, Pronskih AA, Ustyantseva IM et al (2003) Poly trauma. Nauka, Novosibirsk

    Google Scholar 

  5. Moroni A, Faldini C, Marchetti S et al (2001) Fixation in osteoporotic bone using hydroxyapatitecoated tapered external fixation pins – a prospective randomized study in wrist fractures (abstract). In: Proceedings of the fifth congress of the European Federation of National Associations of Orthopaedics and Traumatology, Greece, 2001, p 120

    Google Scholar 

  6. Caja VL, Piza G, Navarro A (2003) Hydroxyapatite coating of external fixation pins to decrease axial deformity during tibial lengthening for short stature. J Bone Joint Surg Am 85-A(8):1527–1531

    PubMed  Google Scholar 

  7. Golubev GSh (1997) Ilizarov’s external fixator computer control in clinical conditions. SKNC VSH, Rostov-on-Don

    Google Scholar 

  8. Shevtsov VI, Nemkov VA, Sklyar LV (1995) Ilizarov apparatus. Biomechanics. Periodika, Kurgan

    Google Scholar 

  9. Kaplunov OA (2002) Transosseous osteosynthesis according Ilizarov in traumatology and orthopedics. GEOTAR-MED, Moscow, p 304

    Google Scholar 

  10. Shved SI, Sysenko UM (1997) The methods of bone fragment control in the treatment of patients with close diaphyseal comminuted fractures of long bones. Geniy Ortopedii 1:41–44

    Google Scholar 

  11. Shevtsov VI, Shved SI, Sisenko JM (2002) Transosseous osteosynthesis in treatment of comminuted fractures. ZAO “Dammi”, Kurgan, 2002, p 326

    Google Scholar 

  12. Pichkhadze IM (1994) Some of the theoretical grounds of osteosynthesis and its practical realization with computer aid. Vestnik travmatologii i ortopedii imeni Priorova (Priorov bulletin of traumatology and orthopedics-PBTO) 3:9–13

    Google Scholar 

  13. Slobodsky AB (2002) Optimization of treatment of long bones fractures of the lower extremities with the help of computer technologies (abstracts). In: Kornilov NV (ed) Proceedings of the congress “people and their health”. St. Petersburg, 2002, p 102

    Google Scholar 

  14. Shtarker H, Volpin G, Stolero J et al (2002) Computerized tomography mal alignment test for planning and correction of combined planar and rotational lower limb deformities by the Ilizarov method. In: Proceedings of the SICOT/SIROT XXII world congress, San Diego, 2002, p 72

    Google Scholar 

  15. Cherkashin A, Hong Lin, Birch I, Samchukov M (2002) Preventing axial deviation complications during deformity correction using ULegPerfect planning system. In: Proceedings of the SICOTI SIROT XXII world congress, San Diego, 2002, p 244

    Google Scholar 

  16. Morandi M (2003) Taylor spatial frame. Minerva Ortop Traumatol I54:54–56

    Google Scholar 

  17. AI-Sayyad M (2004) The Taylozarov: an easy and precise technique to achieve residual deformity correction. In: Proceedings of the third meeting of the international association for the study and application of the method of Ilizarov, Istanbul, 2004, p 258

    Google Scholar 

  18. Atef H, Qaddoumi J, Whately C (2004) Acute tibial fractures treated with the Taylor spatial frame. In: Proceedings of the third meeting of the international association for the study and application of the method of Ilizarov, Istanbul, 2004, p 358

    Google Scholar 

  19. Binski J (2004) New devices. In: Proceedings of the third meeting of the international association for the study and application of the method of Ilizarov, Istanbul, 2004, p 61

    Google Scholar 

  20. Krause N, Mendicino R, Shimada K et al (2004) Computer-aided bone distraction. US Patent 6,701,174Bl

    Google Scholar 

  21. Glozman Z, Liram M, Eidelman M (2004) Computer assisted program for planning of the Taylor spatial frame. In: Proceedings of the third meeting of the international association for the study and application of the method of Ilizarov, Istanbul, 2004, p 260

    Google Scholar 

  22. Kontes VD (1998) The method of remote reduction at tibial close fractures and device for its implementation. Patent 2165742, Russian Federation. Applied 26 Mar 1996, published 27 July 1998

    Google Scholar 

  23. Shevtsov VI, Popkov AV, Burlakov EV, Rutz FJ (1993) Operative lengthening of femur by Ilizarov with use of automatic distraction/The information methodical

    Google Scholar 

  24. Shevtsov VI, Shchudlo MM, Utkin VA, Erofeev SA (1996) Mathematical modelling of distraction osteogenesis. Genij Ortopedii 1:6–13

    Google Scholar 

  25. Shevtsov VI, Popkov AV (1998) Operative lengthening of lower extremities. Meditsina, Moscow

    Google Scholar 

  26. Popkov AV, Shevtsov VI (2001) Achondroplasia. Meditsina, Moscow

    Google Scholar 

  27. Solomin LN, Kondratiev AS, Mitrenin VB et al (2004) The automated manipulator for reduction of bone fragments. GNTSR TSNII RTK, St. Petersburg

    Google Scholar 

  28. Adamovich IS (1985) Mathematical modeling of the wire and evaluation of binding and metal plasticity for rigidity for compressive-distractive apparatus. In: Kalnberz VK (ed) Apparatus and methods of external fixation in traumatology and orthopaedics, vol 3, Riga, pp 7–11

    Google Scholar 

  29. Evseev VI, Korepanov MG (1988) Biomechanic modeling of osteosynthesis. In: Kalnberz VK (ed) Modern problems of biomechanics, vol 5. Zinatne, Riga, pp 73–93

    Google Scholar 

  30. Blokha AG (1992) Mathematical modeling of system “apparatus-extremity segment” at transosseous compression-distraction osteosynthesis. In: Biomechanics for protection of life and health of man. Nizhni Novgorod, pp 28–29

    Google Scholar 

  31. Begun PI, Afonin PN (2002) Computer modeling in biomechanics. The manual. SPbGETU, St. Petersburg, p 72

    Google Scholar 

  32. Novitskaja NV, Stakheev LA (1975) Device for Ilizarov frame for definition of bone fragment mobility in external fixation. Ortopedija, Travmatologija i Protezirivanije 4:75–76

    Google Scholar 

  33. Karptsov VI (1975) Objective methods of monitoring during bone fractures treatment using external fixation. PhD thesis. LITO, Leningrad, p 163

    Google Scholar 

  34. Morgun VV (1986) Acoustoemissive method of biomechanical modes validation in external fixation apparatus. In: Advances of biomechanics in medicine, vol 3. RITO, Riga, pp 578–583

    Google Scholar 

  35. Morgun VV (1989) Transosseous compression distraction osteosynthesis of bone fractures in conditions of a controllable biomechanical mode. Abstract of PhD thesis. KHNIITO, Kharkov, p. 22

    Google Scholar 

  36. Shchurov VA, Gorbachev LJ (1998) Estimation of micro mobility of bone fragments. In: Proceedings of the 4th Russian conference on biomechanics and biomechanics-9S, Nizhni Novgorod, 1998, p 229

    Google Scholar 

  37. Kornilov NV, Samojlov KA, Karptsov VI (1989) The condition of reparative osteogenesis in patients with femur fractures using wire-pin external fixation. Vestnik Hirurgii imeni 1.1. Grekova, 1:66–68

    Google Scholar 

  38. Pustovojt MI, Kotskovich IM, Strutinsky L (1993) Ilizarov distraction regenerate training with the help of controlled mechanical-dynamical influences. Ilizarov method: achievements and prospects. In: Proceedings of the international conference devoted to the memory of the academician Ganizarov. RSC “RTO”, Kurgan, 1993, pp 225–226

    Google Scholar 

  39. Popsujshapka AK (1991) Functional treatment of shaft long bone fractures (clinical and an experimental research). PhD thesis. KhNIITO, Kharkov, p 323

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Nikolaevich Solomin M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Solomin, L.N. (2012). Biomechanical Principles. In: Solomin, L. (eds) The Basic Principles of External Skeletal Fixation Using the Ilizarov and Other Devices. Springer, Milano. https://doi.org/10.1007/978-88-470-2619-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2619-3_2

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2618-6

  • Online ISBN: 978-88-470-2619-3

  • eBook Packages: Medicine

Publish with us

Policies and ethics