Skip to main content

Part of the book series: SIMAI Springer Series ((SEMA SIMAI))

Abstract

Cancer dynamics is sometimes associated to well-defined transitions between qualitative properties of neoplasms, or even to the shift from presence to regression. Cancer is largely understood as a Darwinian evolution experiment within organisms, characterized by a break of cooperation between cells. Some patterns of sudden change have been identified as phase transitions, similar to those known from the physics of phase changes. Two of them are analyzed here: (a) the shift from cancer to cancer-free tissues under the interaction with the immune system, and (b) the predicted existence of a threshold of instability associated to unstable tumorigenesis. The nature, evidence and implications of these transitions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specifically, if we have a chain of length L involving a sequence with only one zero, and assuming that μ b is the probability of mutation per unit and replication round, the probability of recovering the master is given by P(NM) = μb(1b)L−1. If μb is very small, we can approximate (1 — μb)L−1 ≈ exp(—L + 1) ≈ exp(—L). Since L is typically large, the exponential term makes the probability of back mutation extremely small.

  2. 2.

    This is in contrast with standard, so called equilibrium transitions, were we move from one phase to another by increasing the temperature, but the previous phase can be recovered by decreasing the temperature again, which cannot occur in our example by lowering mutation rates.

References

  1. Adam, J.A., Bellomo, N.: A survey of models for tumor-immune system dynamics. Birkhauser, Boston (1996)

    MATH  Google Scholar 

  2. Cahill, D.P., Kinzler, K.W., Vogelstein, B., Lengauer C.: Genetic instability and darwinian selection in tumors. Trends Genet. 15, M57-M61 (1999)

    Article  Google Scholar 

  3. Cole, W.H.: Spontaneous regression of cancer and the importance of finding its cause. Natl. Cancer Inst. Monogr. 44, 5–9 (1976)

    Google Scholar 

  4. Cui, Z., Willingham, M.C., Hicks, A.M., Alexander-Miller, M.A., Howard, T.D., Hawkins, G.A., Miller, M.S., Weir, H.M., Du, W., DeLong, C.J.: Spontaneous regression of advanced cancer: Identification of a unique genetically determined, age-dependent trait in mice. Proc. Natl. Acad. Sci. USA 100, 6682–6687 (2003)

    Article  Google Scholar 

  5. Deisboeck, T.S., Couzin, I.D.: Collective behavior in cancer cell populations. Bioessays 31, 190-197(2009)

    Article  Google Scholar 

  6. Domingo, E., Holland, J.J.: Mutation rates and rapid evolution of RNA viruses. In: Morse, S. (ed.) The evolutionary biology of RNA viruses, pp. 161–183, Raven Press, New York (1994)

    Google Scholar 

  7. Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwiss. 58, 465-523(1971)

    Article  Google Scholar 

  8. Eigen, M., McCaskill, Schuster, P.: (1987) The molecular quasispecies. Adv. Chem. Phys. 75, 149-263(1987)

    Google Scholar 

  9. Fox, J.F., Loeb, L.A.: Lethal mutagenesis: targeting the mutator phenotype in cancer. Seminars Cancer Biol. 20, 353–359 (2010)

    Article  Google Scholar 

  10. Garay, R.P., Lefever, R.: A kinetic approach to the immunology of cancer: stationary state properties of effector-target cell reactions. J. Theor. Biol. 73, 417–438 (1978)

    Article  MathSciNet  Google Scholar 

  11. Gatenby, R.A.: Application of competition theory to tumour growth: implications for tumour biology and treatment. Europ. J. Cancer 32A, 722–726 (1996)

    Article  Google Scholar 

  12. Gatenby, R.A., Frieden, B.R.: Application of information theory and extreme physical information to carcinogenesis. Cancer Res. 62, 3675–3684 (2002)

    Google Scholar 

  13. Greaves, M., Maley, C.C.: Clonal evolution in cancer. Nature 481, 306–313 (2012)

    Article  Google Scholar 

  14. Lengauer, C., Kinzler, K.W., Vogelstein, B.: Genetic instabilities in human cancers. Nature 396, 643–649 (1998)

    Article  Google Scholar 

  15. Loeb, L.A.: Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075-3079(1991)

    Google Scholar 

  16. Loeb, L.A., Essigmann, J.M., Kazazi, F., Zhang, J., Rose, K.D., Mullins, J.I.: Lethal mutage- nesis of HIV with mutagenic nucleoside analogs. Proc. Natl. Acad. Sci. USA 96, 1492–1497 (1999)

    Article  Google Scholar 

  17. Mallet, D.G., de Pillis, L.G.: A cellular automata model of tumor-immune system interactions. J. Theor. Biol. 239, 334–350 (2006)

    Article  MathSciNet  Google Scholar 

  18. Merlo, L.M.F., Pepper, J.W., Reid, B.J., Maley, C.C.: Canceras an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935 (2006)

    Article  Google Scholar 

  19. Nowell, P.C. : The clonal evolution of tumor cell populations. Science 194, 23–32 (1976)

    Article  Google Scholar 

  20. Rosenberg, S.A.: Progress in human tumor immunology and immunotherapy. Nature 411, 380-384(2001)

    Article  Google Scholar 

  21. Schuster, P.: How do RNA molecules and viruses explore their worlds? In: Cowan, G.A., Pines, D., Meltzer, D. (eds.) Complexity: metaphors, models and reality, pp. 383–418. Addison- Wesley, Reading, MA (1994)

    Google Scholar 

  22. Solé, R.V.: Phase transitions in unstable cancer cell populations. Eur. Phys. J. B 35, 117–124 (2003)

    Article  Google Scholar 

  23. Solé, R.V.: Phase transitions. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  24. Solé, R.V., Deisboeck, T.S.: An error catastrophe in cancer? J. Theor. Biol. 228, 47–54 (2004)

    Article  Google Scholar 

  25. Solé, R.V., Goodwin B.: Signs of Life: How complexity pervades biology. Basic Books, New York (2001)

    Google Scholar 

  26. Solé, R.V., Rodriguez-Caso, C., Deisboeck, T.S., Saldanya, J.: Cancer stem cells as the engine of unstable tumor progression. Journal of Theoretical Biology 253, 629–637 (2008)

    Article  MathSciNet  Google Scholar 

  27. Spencer, S., Gerety, R., Pienta, K., Forrest, S.: Modeling somatic evolution in tumorigenesis. PLoS Comput. Biol. 2, e108 (2006)

    Article  Google Scholar 

  28. Weaver, B.A.A., Silk, A.D., Montagna, C., Verdier-Pinard, P., Cleveland, D.W.: Aneuploidy acts both oncogenically and as a tumor supressor. Cancer cell 11, 25–36 (2007)

    Article  Google Scholar 

  29. Weinberg, R.A.: The Biology of Cancer. Garland, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard V. Solé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Solé, R.V. (2012). Phase Transitions in Cancer. In: d’Onofrio, A., Cerrai, P., Gandolfi, A. (eds) New Challenges for Cancer Systems Biomedicine. SIMAI Springer Series. Springer, Milano. https://doi.org/10.1007/978-88-470-2571-4_3

Download citation

Publish with us

Policies and ethics