Skip to main content

Part of the book series: MS&A ((MS&A))

  • 2167 Accesses

Abstract

Some molecular control mechanisms of blood glucose are described schematically in Fig. 4.1. Glucose comes from food and liver, and is utilized by brain and nerve cells (insulin-independent) via the glucose transporter 3 (GLUT3) or by tissue cells such as muscle, kidney, and fat cells (insulin-dependent) via the glucose transporter 4 (GLUT4). Glucose is transported into and out of liver cells by the concentrationdriven glucose transporter 2 (GLUT2), which is insulin-independent. In response to a low blood glucose level (<80 mg/dl or 4.4 mmol/L), α cells of the pancreas produce the hormone glucagon. The glucagon initiates a series of activations of kinases, and finally leads to the activation of the glycogen phosphorylase, which catalyzes the breakdown of glycogen into glucose. In addition, the series of activations of kinases also result in the inhibition of glycogen synthase and then stop the conversion of glucose to glycogen. In response to a high blood glucose level (> 120 mg/dl or 6.7 mmol/L), β cells of the pancreas secrete insulin. Insulin triggers a series of reactions to activate the glycogen synthase, which catalyzes the conversion of glucose into glycogen. Insulin also initiates a series of activations of kinases in tissue cells to lead to the redistribution of GLUT4 from intracellular storage sites to the plasma membrane. Once at the cell surface, GLUT4 transports glucose into the muscle or fat cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablooglu A.J., Kohanski R.A.: Activation of the insulin receptor’s kinase domain changes the rate-determining step of substrate phosphorylation. Biochemistry 40, 504–513 (2001).

    Article  Google Scholar 

  2. Ackerman E., Gatewood L.C., Rosevear J.W., Molnar G.D.: Model studies of blood glucose regulation. Bull. Math. Biophys. 27, 21–27 (1965).

    Article  Google Scholar 

  3. Albisser A.M., Leibel B.S., Ewart T.G., Davidovac Z., Botz C.K., Zingg W.: An artificial endocrine pancreas. Diabetes 23, 389–396 (1974).

    Google Scholar 

  4. Albisser A.M., Leibel B.S., Ewart T.G., Davidovac Z., Botz C.K., Zingg W., Schipper H., Gander R.: Clinical control of diabetes by the artificial pancreas. Diabetes 23, 397–404 (1974).

    Google Scholar 

  5. Bastl C., Finkelstein F., Sherwin R., Hendler R., Felig P., Hayslett J.: Renal extraction of glucagon in rats with normal and reduced renal function. Am. J. Physiol. 233, 67–71 (1977).

    Google Scholar 

  6. Bergman R.N., Ider Y.Z., Bowden C.R., Cobelli C.: Quantitative estimation of insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 236, E667–E677 (1979).

    Google Scholar 

  7. Bergman R.N., Phillips L.S., Cobelli C.: Measurement of insulin sensitivity and β-cell glucose sensitivity from the response to intraveous glucose. J. Clinical Investigation. 68, 1456–1467 (1981).

    Article  Google Scholar 

  8. Bergman R.N., Finegood D.T., Ader M.: Assessment of insulin sensitivity in vivo. Endocrine Reviews. 6, 45–86 (1985).

    Article  Google Scholar 

  9. Bertoldo A., Pencek R.R., Azuma K., Price J.C., Kelley C., Cobelli C., Kelley D.E.: Interactions between delivery, transport, and phosphorylation of glucose in governing uptake into human skeletal muscle. Diabetes. 55, 3028–3037 (2006).

    Article  Google Scholar 

  10. Cerny V.: A thermodynamical approach to the travelling salesman problem: an efficient simulation algorithm. J. Optim. Theory and Appl. 45, 41–51 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  11. Clemens A.H., Chang P.H., Myers R.W.: The development of biostator, a glucose controlled insulin infusion system (GCIIS). Horm Metab Res. Suppl 7, 23–33 (1977).

    Google Scholar 

  12. Colville C.A., Seatter M.J., Jess T.J., Gould G.W., Thomas H.M.: Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem. J. 290, 701–706 (1993).

    Google Scholar 

  13. Emmanouel, D., Jaspan J., Rubenstein A., Huen A., Fink E., Katz A.: Glucagon metabolism in the rat: contribution of the kidney to the metabolic clearance rate of the hormone. J. Clin. Invest. 62, 6–13 (1978).

    Article  Google Scholar 

  14. Goodner C.J., Walike B.C., Koerker D.J., Ensinck J.W., Brown A.C., Chideckel E.W., Palmer J., Kalnasy L.: Insulin, glucagon, and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195, 177–179 (1977).

    Article  Google Scholar 

  15. Hansen B.C., Jen K.C., Pek S.B., Wolfe R.A.: Rapid oscillations in plasma insulin, glucagon, and glucose in obese and normal weight humans. Journal of Clinical Endocrinology & Metabolism. 54, 785–792 (1982).

    Article  Google Scholar 

  16. Hovorka R.: Continuous glucose monitoring and closed-loop systems. Diabetic Medicine 23, 1–12 (2006).

    Article  Google Scholar 

  17. Jaspan J.B., Lever E., Polonsky K.S., Cauter E.V.: In vivo pulsatility of pancreatic islet peptides. Am. J. Physiol. Endocrinol. Metab. 251, E215–E226 (1986).

    Google Scholar 

  18. Kahn C.R.: Membrane receptors for hormones and neurotransmitters. J. Cell Biology. 70, 261–286 (1976).

    Article  Google Scholar 

  19. Khalil H.K.: Nonlinear Systems. Prentice Hall, New Jersey (2002).

    MATH  Google Scholar 

  20. Kirkpatrick S., Gelatt C.D., Vecchi, M. P.: Optimization by Simulated Annealing. Science, New Series 220, 671–680 (1983).

    MathSciNet  MATH  Google Scholar 

  21. Korach-André M., Roth H., Barnoud D., Péan M., Péronnet F., Leverve X.: Glucose appearance in the peripheral circulation and liver glucose output in men after a large 13C starch meal. Am. J. Clin. Nutr. 80, 881–886 (2004).

    Google Scholar 

  22. Lang D.A., Matthews D.R., Peto J., Turner R.C.: Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings. New England Journal of Medicine. 301 1023–1027 (1979).

    Article  Google Scholar 

  23. Lang D.A., Matthews D.R., Burnett M., Turner R.C.: Brief, irregular oscillations of basal plasma insulin and glucose concentrations in diabetic man. Diabetes 30, 435–439 (1981).

    Article  Google Scholar 

  24. Lefebvre P., Luykx A., Nizet A.: Renal handling of endogenous glucagon in the dog: comparison with insulin. Metabolism 23 753–760 (1974).

    Article  Google Scholar 

  25. Li J., Kuang Y., Mason C.C.: Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J. Theo. Biol. 242, 722–735 (2006).

    Article  MathSciNet  Google Scholar 

  26. Liu W., Hsin C., Tang F.: A molecular mathematical model of glucose mobilization and uptake. Math. Biosci. 221, 121–129 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu W., Tang F.: Modeling a simplified regulatory system of blood glucose at molecular levels. J. Theor. Biol. 252, 608–620 (2008).

    Article  Google Scholar 

  28. Man C.D., Caumo A., Basu R., Rizza R.A., Toffolo G., Cobelli C.: Minimal model estimation of glucose absorption and insulin sensitivity from oral test: validation with a tracer method. Am. J. Physiol. Endocrinol Metab. 287, E637–E643 (2004).

    Article  Google Scholar 

  29. Man C.D., Campioni M., Polonsky K.S., Basu R., Rizza R.A., Toffolo G., Cobelli C.: Two-hour seven-sample oral glucose tolerance test and meal protocol: minimal model assessment of β-cell responsivity and insulin sensitivity in nondiabetic individuals. Diabetes. 54, 3265–3273 (2005).

    Google Scholar 

  30. Man C.D., Rizza R.A., Cobelli C.: Meal simulation model of the glucose-insulin system. IEEE Tran. Biomed. Eng. 54, 1740–1749 (2007).

    Article  Google Scholar 

  31. Nakai C., Thomas J.A.: Effects of magnesium on the kinetic properties of bovine heart glycogen synthase D. J. Biol. Chem. 250, 4081–4086 (1975).

    Google Scholar 

  32. Nishimura H., Pallardo F., Seidner G.A., Vannucci S., Simpson I.A., Birnbaum M.J.: Kinetics of GLUT1 and GLUT4 GlucosTe ransporters Expressed in Xenopus Oocytes. J. Biol. Chem. 268, 8514–8520 (1993).

    Google Scholar 

  33. Panteleon A.E., Loutseiko M., Steil G.M., Rebrin K.: Evaluation of the effect of gain on the meal response of an automated closed-loop insulin delivery system. Diabetes 55, 1995–2000 (2006).

    Article  Google Scholar 

  34. Pedersen M.G., Toffolo G.M., Cobelli C.: Cellular modeling: insight into oral minimal models of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 298, E597–E601 (2010).

    Google Scholar 

  35. Sedaghat A.R., Sherman A., Quon M.J.: A mathematical model of metabolic insulin signaling pathways. Am. J. Physiol. Endocrinol. Metab. 283, E1084–E1101 (2002).

    Google Scholar 

  36. Shapiro E.T., Tillil H., Polonsky K.S., Fang V.S., Rubenstein A.H., Cauter E.V.: Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J. Clinical Endocrinol. & Metab. 67, 307–314 (1988).

    Article  Google Scholar 

  37. Simon C., Brandenberger G., Follenius M.: Ultradian oscillations of plasma glucose, insulin, and C-peptide in man during continuous enteral nutrition. J. Clinical Endocrinol. & Metab. 64, 669–674 (1987).

    Article  Google Scholar 

  38. Steil G.M., Rebrin K., Darwin C., Hariri F., Saad M.F.: Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55, 3344–3350 (2006).

    Article  Google Scholar 

  39. Sturis J., Polonsky K.S., Mosekilde E., Cauter E.V.: Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am. J. Physiol. Endocrinol. Metab. 260, E801–E809 (1991).

    Google Scholar 

  40. Toffolo G., Cobelli C.: The hot IVGTT two-compartment minimal model: an improved version. Am. J. Physiol. Endocrinol. Metab. 284, E317–E321 (2003).

    Google Scholar 

  41. Toffolo G., Campioni M., Basu R., Rizza R.A., Cobelli C.: A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am. J. Physiol. Endocrinol. Metab. 290, E169–E176 (2006).

    Article  Google Scholar 

  42. Tolic I.M., Mosekilde E., Sturis J.: Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J. Theoretical Biology 207, 361–375 (2000).

    Article  Google Scholar 

  43. Varma A., Morbidelli M., Wu H.: Parametric Sensitivity in Chemical Systems. Cambridge University Press, UK (1999).

    Book  Google Scholar 

  44. Walcott S., Lehman S.L.: Enzyme kinetics ofmuscle glycogen phosphorylase b. Biochemistry 46, 11957–11968 (2007).

    Article  Google Scholar 

  45. Winston G.W., Reitz R.C.: Effects of chronic ethanol ingestion on liver glycogen phosphorylase in male and female rats. Am. J. Clin. Nutr. 34, 2499–2507 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Liu, W. (2012). Control of Blood Glucose. In: Introduction to Modeling Biological Cellular Control Systems. MS&A. Springer, Milano. https://doi.org/10.1007/978-88-470-2490-8_4

Download citation

Publish with us

Policies and ethics