Skip to main content

Coagulative Disturbances in Trauma

  • Chapter
  • First Online:
Hemocoagulative Problems in the Critically Ill Patient

Abstract

Massive bleeding in patients with major trauma is the most common cause of in-hospital mortality during the first 48 h and in the early postoperative period. It interferes with the coagulation process, resulting in a coagulopathy, even in patients with previously normal hemostasis. The presence of trauma-induced coagulopathy (TIC) reflects the severity of injury and is an independent predictor of mortality in trauma. The pathogenesis of TIC is complex and multifactorial, involving physiological, biochemical, immunological, and cellular mechanisms. In particular, TIC has a number of causal factors, including dilutional coagulopathy after fluid resuscitation and consumption of clotting factors and platelets due to major blood loss. Increased fibrinolysis, activation of anticoagulant pathways, hypocalcemia, and disseminated-intravascular-coagulation-like syndrome may also play a role. Moreover hypothermia and acidosis contribute to the occurrence of TIC. In this setting the interpretation of blood coagulation tests can be unreliable since they are performed at a normal pH and temperature, whereas these patients are often hypothermic and acidotic. Besides the surgical repair of the bleeding source, if feasible, the prompt recognition and correction of these latter conditions and the administration of both procoagulant and antifibrinolytic substances are the cornerstones of the treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cushing M, Shaz BH (2011) Blood transfusion in trauma patients: unresolved questions. Minerva Anestesiol 77(3):349–359

    PubMed  CAS  Google Scholar 

  2. MacLeod JB, Lynn M, McKenney MG, Cohn SM, Murtha M (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55(1):39–44

    Article  PubMed  Google Scholar 

  3. Lier H, Böttiger BW, Hinkelbein J, Krep H, Bernhard M (2011) Coagulation management in multiple trauma: a systematic review. Intensive Care Med 37(4):572–582

    Article  PubMed  Google Scholar 

  4. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Stahel PF, Vincent JL, Spahn DR (2010) Task force for advanced bleeding care in Trauma, management of bleeding following major trauma: an updated European guideline. Crit Care 14(2):R52

    Article  PubMed  Google Scholar 

  5. Spahn DR, Rossaint R (2005) Coagulopathy and blood component transfusion in trauma. Br J Anaesth 95(2):130–139

    Article  PubMed  CAS  Google Scholar 

  6. Thorsen K, Ringdal KG, Strand K, Søreide E, Hagemo J, Søreide K (2011) Clinical and cellular effects of hypothermia, acidosis and coagulopathy in major injury. Br J Surg. doi: 10.1002/bjs.7497

  7. Wafaisade A, Wutzler S, Lefering R, Tjardes T, Banerjee M, Paffrath T, Bouillon B, Maegele M (2010) Trauma registry of DGU, drivers of acute coagulopathy after severe trauma: a multivariate analysis of 1987 patients. Emerg Med J 27(12):934–939

    Article  PubMed  Google Scholar 

  8. Lynn M, Jeroukhimov I, Klein Y, Martinowitz U (2002) Updates in the management of severe coagulopathy in trauma patients. Intensive Care Med 28(Suppl 2):S241–S247

    Google Scholar 

  9. Meng ZH, Wolberg AS, Monroe DM 3rd, Hoffman M (2003) The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma 55:886–891

    Article  PubMed  CAS  Google Scholar 

  10. Jurkovich GJ, Greiser WB, Luterman A, Curreri PW (1987) Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 27(9):1019–1024

    Article  PubMed  CAS  Google Scholar 

  11. Watts DD, Trask A, Soeken K, Perdue P, Dols S, Kaufmann C (1998) Hypothermic coagulopathy in trauma: effect of varying levels of hypothermia on enzyme speed, platelet function, and fibrinolytic activity. J Trauma 44(5):846–854

    Article  PubMed  CAS  Google Scholar 

  12. Kermode JC, Zheng Q, Milner EP (1999) Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood 94:199–207

    PubMed  CAS  Google Scholar 

  13. Hoyt DB, Junger WG, Loomis WH, Liu FC (1994) Effects of trauma on immune cell function: impairment of intracellular calcium signaling. Shock 2(1):23–28

    Article  PubMed  CAS  Google Scholar 

  14. Gando S (2001) Disseminated intravascular coagulation in trauma patients. Semin Thromb Hemost 27(6):585–592

    Article  PubMed  CAS  Google Scholar 

  15. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, Pittet JF (2008) Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64(5):1211–1217

    Article  PubMed  Google Scholar 

  16. Fries D, Martini WZ (2010) Role of fibrinogen in trauma-induced coagulopathy. Br J Anaesth 105(2):116–121

    Article  PubMed  CAS  Google Scholar 

  17. Martini WZ, Chinkes DL, Pusateri AE, Holcomb JB, Yu YM, Zhang XJ, Wolfe RR (2005) Acute changes in fibrinogen metabolism and coagulation after hemorrhage in pigs. Am J Physiol Endocrinol Metab 289(5):E930–E934

    Article  PubMed  CAS  Google Scholar 

  18. Martini WZ, Holcomb JB (2007) Acidosis and coagulopathy: the differential effects on fibrinogen synthesis and breakdown in pigs. Ann Surg 246(5):831–835

    Article  PubMed  Google Scholar 

  19. Martini WZ (2007) The effects of hypothermia on fibrinogen metabolism and coagulation function in swine. Metabolism 56(2):214–221

    Article  PubMed  CAS  Google Scholar 

  20. Mittermayr M, Streif W, Haas T, Fries D, Velik-Salchner C, Klingler A, Oswald E, Bach C, Schnapka-Koepf M, Innerhofer P (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105(4):905–917

    Article  PubMed  CAS  Google Scholar 

  21. Adam S, Karger R, Kretschmer V (2010) Influence of different hydroxyethyl starch (HES) formulations on fibrinogen measurement in HES-diluted plasma. Clin Appl Thromb Hemost 16(4):454–460

    Article  PubMed  CAS  Google Scholar 

  22. Stinger HK, Spinella PC, Perkins JG, Grathwohl KW, Salinas J, Martini WZ, Hess JR, Dubick MA, Simon CD, Beekley AC, Wolf SE, Wade CE, Holcomb JB (2008) The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma 64(2 Suppl):S79–S85

    Article  PubMed  CAS  Google Scholar 

  23. Bolliger D, Görlinger K, Tanaka KA (2010) Pathophysiology and treatment of coagulopathy in massive hemorrhage and hemodilution. Anesthesiology 113(5):1205–1219

    Article  PubMed  Google Scholar 

  24. Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M (2001) Scientific subcommittee on disseminated intravascular coagulation (DIC) of the international society on thrombosis and haemostasis (ISTH), towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 86(5):1327–1330

    PubMed  CAS  Google Scholar 

  25. Hardy JF, de Melrose P, Samama CM, Membres of the Groupe d’Intérêt en Hémostase Péri opératoire (2006) Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth 53(6 Suppl):S40–S58

    PubMed  Google Scholar 

  26. Kaplan LJ, Cheung NH, Maerz L, Lui F, Schuster K, Luckianow G, Davis K (2009) A physicochemical approach to acid-base balance in critically ill trauma patients minimizes errors and reduces inappropriate plasma volume expansion. J Trauma 66(4):1045–1051

    Article  PubMed  CAS  Google Scholar 

  27. Vallés J, Santos MT, Aznar J, Martínez M, Moscardó A, Piñón M, Broekman MJ, Marcus AJ (2002) Platelet-erythrocyte interactions enhance alpha(IIb)beta(3) integrin receptor activation and P-selectin expression during platelet recruitment: down-regulation by aspirin ex vivo. Blood 99(11):3978-3984

    Google Scholar 

  28. Santos MT, Valles J, Marcus AJ, Safier LB, Broekman MJ, Islam N, Ullman HL, Eiroa AM, Aznar J (1991) Enhancement of platelet reactivity and modulation of eicosanoid production by intact erythrocytes, anew approach to platelet activation and recruitment. J Clin Invest 87(2):571–580

    Article  PubMed  CAS  Google Scholar 

  29. Peyrou V, Lormeau JC, Hérault JP, Gaich C, Pfliegger AM, Herbert JM (1999) Contribution of erythrocytes to thrombin generation in whole blood. Thromb Haemost 81(3):400–406

    PubMed  CAS  Google Scholar 

  30. Knutson F, Lööf H, Högman CF (1999) Pre-separation storage of whole blood: the effect of temperature on red cell 2,3-diphosphoglycerate and myeloperoxidase in plasma. Transfus Sci 21(2):111–115

    Article  PubMed  CAS  Google Scholar 

  31. Armand R, Hess JR (2003) Treating coagulopathy in trauma patients. Transfus Med Rev 17(3):223–231

    Article  PubMed  Google Scholar 

  32. Moore FA, Moore EE, Sauaia A (1997) Blood transfusion, an independent risk factor for postinjury multiple organ failure. Arch Surg 132(6):620–624

    Article  PubMed  CAS  Google Scholar 

  33. Silliman CC, Clay KL, Thurman GW, Johnson CA, Ambruso DR (1994) Partial characterization of lipids that develop during the routine storage of blood and prime the neutrophil NADPH oxidase. J Lab Clin Med 124(5):684–694

    PubMed  CAS  Google Scholar 

  34. Duchesne JC, Hunt JP, Wahl G, Marr AB, Wang YZ, Weintraub SE, Wright MJ, McSwain NE Jr (2008) Review of current blood transfusions strategies in a mature level I trauma center: were we wrong for the last 60 years? J Trauma 65(2):272–276

    Article  PubMed  Google Scholar 

  35. O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, Williamson LM, British Committee for Standards in Haematology, Blood Transfusion Task Force (2004) Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol 126(1):11–28

    Article  PubMed  Google Scholar 

  36. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, Ker K (2011) Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev (1):CD001886

    Google Scholar 

  37. CRASH-2 trial collaborators (2010) Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376(9734):23–32

    Google Scholar 

  38. Fergusson DA, Hébert PC, Mazer CD, Fremes S, MacAdams C, Murkin JM, Teoh K, Duke PC, Arellano R, Blajchman MA, Bussières JS, Côté D, Karski J, Martineau R, Robblee JA, Rodger M, Wells G, Clinch J, Pretorius R (2008) BART investigators a comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med 358(22):2319–2331

    Article  PubMed  CAS  Google Scholar 

  39. Hedner U (2000) NovoSeven as a universal haemostatic agent. Blood Coagul Fibrinolysis 11:S107–S111

    Article  PubMed  CAS  Google Scholar 

  40. Levi M, Levy JH, Andersen HF, Truloff D (2010) Safety of recombinant activated factor VII in randomized clinical trials. N Eng J Med 363:1791–1800

    Article  CAS  Google Scholar 

  41. Levi M, Peters M, Buller HR (2005) Efficacy and safety of recombinant factor VIIa for treatment of severe bleeding: a systematic review. Crit Care Clin 33:883–890

    CAS  Google Scholar 

  42. Ying CL, Tsang SF, Ng KF (2008) The potential use of desmopressin to correct hypothermia-induced impairment of primary haemostasis—an in vitro study using PFA-100. Resuscitation 76(1):129–133

    Article  PubMed  CAS  Google Scholar 

  43. Egli GA, Zollinger A, Seifert B et al (1997) Effect of progressive haemodilution with hydroxyethyl starch, gelatin and albumin on blood coagulation. Br J Anaesth 78:684–689

    PubMed  CAS  Google Scholar 

  44. Karoutsos S, Nathan N, Lahrimi A, Grouille D, Feiss P, Cox DJ (1999) Thrombelastogram reveals hypercoagulability after administration of gelatin solution. Br J Anaesth 82(2):175–177

    Article  PubMed  CAS  Google Scholar 

  45. Wagner BK, D’Amelio LF (1993) Pharmacologic and clinical considerations in selecting crystalloid, colloidal, and oxygen-carrying resuscitation fluids. Part 1. Clin Pharmacol 12:335–346

    CAS  Google Scholar 

  46. Jungheinrich C, Neff TA (2005) Pharmacokinetics of hydroxyethyl starch. Clin Pharmacokinet 44(7):681–699

    Article  PubMed  CAS  Google Scholar 

  47. Roche AM, James MF, Bennett-Guerrero E, Mythen MG (2006) A head-to-head comparison of the in vitro coagulation effects of saline-based and balanced electrolyte crystalloid and colloid intravenous fluids. Anesth Analg 102(4):1274–1279

    Article  PubMed  Google Scholar 

  48. Kasper SM, Meinert P, Kampe S, Görg C, Geisen C, Mehlhorn U, Diefenbach C (2003) Large-dose hydroxyethyl starch 130/0.4 does not increase blood loss and transfusion requirements in coronary artery bypass surgery compared with hydroxyethyl starch 200/0.5 at recommended doses. Anesthesiology 99(1):42–47

    Article  PubMed  CAS  Google Scholar 

  49. Zdolsek HJ, Vegfors M, Lindahl TL, Törnquist T, Bortnik P, Hahn RG (2011) Hydroxyethyl starches and dextran during hip replacement surgery: effects on blood volume and coagulation. Acta Anaesthesiol Scand. doi: 10.1111/j.1399-6576.2011.02434

  50. Türkan H, Ural AU, Beyan C, Yalçin A (1999) Effects of hydroxyethyl starch on blood coagulation profile. Eur J Anaesthesiol 16(3):156–159

    PubMed  Google Scholar 

  51. Jamnicki M, Zollinger A, Seifert B, Popovic D, Pasch T, Spahn DR (1998) The effect of potato starch derived and corn starch derived hydroxyethyl starch on in vitro blood coagulation. Anaesthesia 53(7):638–644

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Garufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Garufi, G., Fiorenza, M.C., Berlot, G. (2012). Coagulative Disturbances in Trauma. In: Berlot, G. (eds) Hemocoagulative Problems in the Critically Ill Patient. Springer, Milano. https://doi.org/10.1007/978-88-470-2448-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2448-9_8

  • Published:

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2447-2

  • Online ISBN: 978-88-470-2448-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics