Skip to main content
  • 169 Accesses

Abstract

The pattern of death of critically ill patients aggressively treated with lifesustaining therapies following the initial resuscitative effort is remarkably similar across patient groups (1). Most of the critically ill patients who eventually go on to die during that hospitalization in whom initial resuscitative efforts are successful do so because of progressive multi-system deterioration often punctuated by infectious episodes and a non-specific septic state. The clinical expression of this initial process a sepsis or sepsis syndrome has been termed the systemic inflammatory response syndrome or SIRS by a recent consensus conference (2). The deterioration of these patients over time with progressive failure of multiple often unrelated organ systems is referred to a multiple organ dysfunction syndrome or MODS to underscore the continuum of tissue injury which may develop rather than by defining a threshold level to indicate the presence of organ failure. Patients usually first express SIRS and then MODS, progressing along a clinical pathway from initial partial recovery following resuscitation, though relapses and septic episodes to death. Diverse disease states such as infection, trauma and burns, pancreatitis and organ rejection share this common process (1). It is our hypothesis that MODS represents the phenomenological process of progressive and cumulative organ system dysfunction that may occur after a variety of diseases characterized by continual intravascular inflammation (3). According to this hypothesis, specific organ dysfunction is less important to outcome than the cumulative tissue burden of SIRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carrico CJ, Meakins JL, Marshall JC, Fry D, Maier RV (1986) Multiple-Organ-Failure Syndrome. Arch Surg 121:196–200

    Article  PubMed  CAS  Google Scholar 

  2. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Article  Google Scholar 

  3. Pinsky MR, Matuschak GM (1990) Multiple systems organ failure: a unifying hypothesis. J Crit Care 5:108–114

    Article  Google Scholar 

  4. Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) Prognosis in acute organ-system failure. Ann Surg 202:685–693

    Article  PubMed  CAS  Google Scholar 

  5. Montgomery AB, Stager MA, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. Am Rev Resp Dis 132:485–489

    PubMed  CAS  Google Scholar 

  6. Butkus DE (1983) Persistent high mortality in acute renal failure. Arch Intern Med 143: 209–212

    Article  PubMed  CAS  Google Scholar 

  7. Pinsky MR (1989) Multiple systems organ failure: Malignant intravascular inflammation. In: Pinsky MR and Matuschak GM (eds.) Multiple systems organ failure. Chn Crit Care 5(2): 195–198

    Google Scholar 

  8. Movat HZ, Cybulsky MI, Colditz IG, Chan MK, Dinarillo CA (1987) Acute inflammation in Gram-negative infection: endotoxin, interleukin-1, tumor necrosis factor, and neutrophils. Fed Proc 46:97–104

    PubMed  CAS  Google Scholar 

  9. Korthuis RJ, Anderson DC, Granger DN (1994) Role of neutrophil-endothelial cell adhesion in inflammatory disorders. J Crit Care 9:47–71

    Article  PubMed  CAS  Google Scholar 

  10. Tracy KJ, Beutler B, Lowery SF et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470–474

    Article  Google Scholar 

  11. Dinarello CA, Cannon JG, Wolff SM et al (1986) Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. J Exp Med 163:1433–1450

    Article  PubMed  CAS  Google Scholar 

  12. Cybulsky MI, Colditz IG, Movat HZ (1986) The role of interieukin-1 in neutrophil leukocyte migration induced by endotoxin. Am J Pathol 124:367–372

    PubMed  CAS  Google Scholar 

  13. Tracy KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21:S415-S422

    Google Scholar 

  14. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O’Dwyer S, Dinarello CA et al (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481–1486

    Article  PubMed  CAS  Google Scholar 

  15. Beutler B, Milsark IW, Cerami A (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871

    Article  PubMed  CAS  Google Scholar 

  16. Waage A, Brandtzaeg P, Halsteusen A, Kierulf P, Espevik T (1989) The complex pattern of cytokines in the serum of patients with meningococcal septic shock. J Exp Med 169:333–338

    Article  PubMed  CAS  Google Scholar 

  17. Waage A, Halstensen A, Espevik T (1987) Association between tumor necrosis factor in serum and fatal outcome in patients with meningococcal disease. Lancet 1:355–357

    Article  PubMed  CAS  Google Scholar 

  18. Hack CE, DeGroot ER, Felt-Bersma RJF, Nuijens JH, Strack van Schijundel RS, Eerenberg- Belmer AJ et al (1989) Increased plasma levels of interleukin-6 in sepsis. Blood 74:1704–1710

    PubMed  CAS  Google Scholar 

  19. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn R, Dupont E (1993) Serum cytokine levels in human septic shock: Relation to multiple systems organ failure and mortality. Chest 103:565–575

    Article  PubMed  CAS  Google Scholar 

  20. Wright SD, Ramos RA, Tobias PS et al (1990) CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

  21. Chouaib S, Welte K, Mertelsmann R, DuPont B (1985) Prostaglandin E, acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin 2 production and down regulation of transferrin receptor expression. J Immunol 135:1172–1179

    PubMed  CAS  Google Scholar 

  22. Beutler B, Tkacenko V, Milsark I et al (1986) Effect of gamma interferon on cachectin expression by mononuclear phagocytes. J Exp Med 164:1791–1796

    Article  PubMed  CAS  Google Scholar 

  23. Stotman GJ, Burchard KW, Williams JJ, D’Anezzo A, Yellin SA (1986) Interaction of prostaglandins, activated complement, and granulocytes in clinical sepsis and hypotension. Surgery 99:744–751

    Google Scholar 

  24. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxation factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  25. Altura BM, Gegrewold A, Burton RW (1985) Failure of microscopic metarterioles to elicit vasodilator responses to acetylcholine, bradykinin, histamine, and substance P after ischemic shock, endotoxemia, and trauma: possible role of endothelial cells. Microcirc Endothelium Lymphatics 2:121–129

    PubMed  CAS  Google Scholar 

  26. Buckley G (1983) The role of oxygen free radicals in human disease processes. Surgery 94: 407–414

    Google Scholar 

  27. Morgan RA, Manning PB, Coran AG et al (1988) Oxygen free radical activity during live E. coh septic shock in the dog. Circ Shock 25:319–323

    PubMed  CAS  Google Scholar 

  28. Matuschak GM, Rinaldo JE (1988) Organ interactions in the adult respiratory distress syndrome during sepsis. Role of the liver in host defense. Chest 94:400–406

    Article  PubMed  CAS  Google Scholar 

  29. Weksler BB, Goldstein IM (1980) Prostaglandins: interactions with platelets and polymorphonuclear leukocytes in hemostasis and inflammation. Am J Med 68:419–428

    Article  PubMed  CAS  Google Scholar 

  30. Ziegler EJ, McCutchan JA, Fierer J et al (1982) Treatment of Gram-negative bacteremia and shock with human antiserum to a mutant E. coh. N Engl J Med 307:1225–1230

    Article  CAS  Google Scholar 

  31. Ziegler EJ and the HA-1A Sepsis Study Group (1991) Treatment of gram negative bacteremia and septic shock with HA-IA human monoclonal antibody against endotoxin: a randomized, double-bhnd, placebo-controlled trial. N Engl J Med 324:429–436

    Article  PubMed  CAS  Google Scholar 

  32. Greenman RL, Schein RMH, Martin MA et al (1991) A controlled clinical trial of E5 murine monoclonal IgM antibody to endotoxin in the treatment of gram-negative sepsis. JAMA 266: 1097–1102

    Article  PubMed  CAS  Google Scholar 

  33. McCloskey RV, Straube RC, Sanders C, Smith SM, Smith CR and the CHESS Trail Study Group (1994) Treatment of septic shock with human monoclonal antibody HA-IA: A randomized, double-blind, placebo-controlled trial. Ann Intern Med 121:1–5

    PubMed  CAS  Google Scholar 

  34. Hinchaw LB, Beller BK, Chang ACK et al (1986) Effect of prior administration of steroids upon recovery from lethal sepsis. Surg Gynecol Obstet 163:335–344

    Google Scholar 

  35. Lefer AM, Tabas J, Smith EF (1980) Salutory effects of prostacyclin in endotoxic shock. Pharmacology 21:206–212

    Article  PubMed  CAS  Google Scholar 

  36. Sprung CL, Caralis PV, Marciai EH et al (1984) The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med 311:1137–1143

    Article  PubMed  CAS  Google Scholar 

  37. Bone RC, Fisher CJ, Clemmer TP et al (1987) A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med 317: 653–659

    Article  PubMed  CAS  Google Scholar 

  38. Fisher CJ Jr, Dhainaut JF, Opal SM, Pribble JP, Balk RA, Slotman GJ, Iberti TJ, Rackow EC, Shapiro MJ, Greenman RL et al (1994) Recombinant human interleukin-1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. JAMA 271:1836–1843

    Article  PubMed  Google Scholar 

  39. Abraham E, Wunderink R, Silverman H, Peri TM, Nasraway S, Levy H, Bone R, Wenzel RP, Balk R, Alfred R, Pennington JE, Wherry JC et al (1995) Efficacy and safety of monoclonal antibody to human tumor necrosis factor a in patients with sepsis syndrome. JAMA 273: 934–941

    Article  PubMed  CAS  Google Scholar 

  40. Luce JM (1993) Introduction to new technology into critical care practice: a history of HA-1A human monoclonal antibody against endotoxin. Crit Care Med 21:1233–1241

    Article  PubMed  CAS  Google Scholar 

  41. Gnidec AC, Sibbald WJ, Cheung H, Metz CA (1988) Ibuprofen reduces the progression of permeability edema in an animal model of hyperdynamic sepsis. J Appi Physiol 65:1024–1032

    CAS  Google Scholar 

  42. Fink MP, Morrissey PE, Stein KL et al (1988) Systemic and regional hemodynamic effects of cyclo-oxygenase and thromboxane synthetase inhibition in normal and hyperdynamic endotoxic rabbits. Circ Shock 26:41–57

    PubMed  CAS  Google Scholar 

  43. Kilboum RO, Gross SS, Jubran A et al (1990) N-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc Natl Acad Sci USA 87:3629–3632

    Article  Google Scholar 

  44. Bell R, Coalson J, Smith J et al (1983) Multiple organ system failure and infection and the adult respiratory distress syndrome. Ann Intern Med 99:293–298

    PubMed  CAS  Google Scholar 

  45. Fry D, Pearlstein L, Fulton R et al (1980) Multiple system organ failure. The role of uncontrolled infection. Arch Surg 115:136–140

    Article  PubMed  CAS  Google Scholar 

  46. Gutierrez G, Palizas F, Doglio G et al (1992) Gastric intramucosal pH as a therapeutic index of tissue oxygenation in critically ill patients. Lancet 339:195–199

    Article  PubMed  CAS  Google Scholar 

  47. Matuschak GM, Rinaldo JE, Pinsky MR, Gavaler JS, Van Thiel DH (1987) Effect of end-stage liver failure on the incidence and resolution of the adult respiratory distress syndrome. J Crit Care 2:162–173

    Article  Google Scholar 

  48. Lamy M, Fallat RJ, Koeniger E et al (1976) Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 114:267–284

    PubMed  CAS  Google Scholar 

  49. Gattinoni L, Persemi A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    Article  PubMed  CAS  Google Scholar 

  50. Dreyfuss D, Bassett G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884

    PubMed  CAS  Google Scholar 

  51. Deitch EA, Winterton J, Bey R (1987) The gut as the portal of entry for bacteremia. Ann Surg 205:681–692

    Article  PubMed  CAS  Google Scholar 

  52. Ledingham IMcA, Allcock SR, Eastaway AT et al (1988) Triple regimen of selective decontamination of the digestive tract, systemic cefotaxime, and microbiological surveillance for prevention of acquired infection in intensive care. Lancet 1:785–790

    Article  PubMed  CAS  Google Scholar 

  53. Pinsky MR (1990) Hemodynamic Effects of Mechanical Ventilation. Appi Cardiopulm Pathophysiol 3:219–227

    Google Scholar 

  54. Valenza F, Ribeiro SP, Slutsky AS (1995) High volume low pressure mechanical ventilation up-regulates IL-Iß production in an ex vivo lung model, [abstract] Am J Respir Crit Care Med 151:A552

    Google Scholar 

  55. Bergstrom J (1978) Ultrafiltration without dialysis for removal of fluid and solutes in uremia. Clin Nephrol 9:156–164

    PubMed  CAS  Google Scholar 

  56. Pugin J, Auckenthaler R, Lew DP, Suter PM (1991) Oropharyngeal decontamination decreases incidence of ventilator-associated pneumonia. JAMA 265:2704–2710

    Article  PubMed  CAS  Google Scholar 

  57. Hickling KG, Walsh J, Henderson S et al (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 22:1568–1578

    Article  PubMed  CAS  Google Scholar 

  58. Ossenkoppele GJ, van der Meulen J, Bronsveld W, Thijs LG (1985) Continuous arteriovenous hemofiltration as an adjuctive therapy for septic shock. Crit Care Med 13:102–104

    Article  PubMed  CAS  Google Scholar 

  59. Kaplan AA, Longnecker RE, Folkert VW (1984) Continuous arteriovenous hemofiltration: a report on six months’ experience. Ann Intern Med 100:358–367

    PubMed  CAS  Google Scholar 

  60. Reidy JJ, Ramsay G (1990) Clinical trials of selective decontamination of the digestive tract: review. Crit Care Med 18:1449–1456

    Article  PubMed  CAS  Google Scholar 

  61. Blanch L, Fernandez R, Valle J, Sole J, Roussos Ch, Artegas A (1994) Effect of two tidal volumes on oxygenation and respiratory system mechanics during the early stage of adult respiratory distress syndrome. J Crit Care 9:151–158

    Article  PubMed  CAS  Google Scholar 

  62. Grootendorst AF, Van Bommel EF, Van Leengoed LA et al (1994) High volume hemofiltration improves hemodynamics and survival in pigs exposed to gut ischemia and reperfusion. Shock 2:72–78

    Article  PubMed  CAS  Google Scholar 

  63. Grootendorst AF, Van Bommel EF, Van Leengoed LA et al (1993) Infusion of ultrafiltrate from endotoxemic pigs depresses myocardial performance in normal pigs. J Care Med 8: 161–169

    CAS  Google Scholar 

  64. Vincent J-L, Tielemans C (1995) Continuous hemofiltration in severe sepsis: is it beneficial? J Crit Care 10:27–32

    Article  PubMed  CAS  Google Scholar 

  65. Smith SD, Jackson RJ, Hannakan CJ et al (1993) Selective decontamination in pediatric liver transplants. A randomized prospective study. Transplantafion 55:1306–1309

    Article  CAS  Google Scholar 

  66. Tetteroo GW, Wagenvoort JH, Mulder PG, Ince C, Bruining HA (1993) Decreased mortality rate and length of stay in surgical intensive care pafients with successful decontaminafion of the gut. Crit Care Med 21:1692–1698

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Pinsky, M.R. (1996). Pathophysiology and Therapy of End-Organ Failure in Critical Illness. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics