Skip to main content

Abstract

The essentials of oxygen radicals (OR°) and the biochemical consequences of their generation are well known. It’s well known also that the oxidative stress and the consequent tissue damage and/or diseases are due to an imbalance between OR° and biological defenses against them (1-4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Autor AP (1982) Pathology of oxygen. Academic, New York

    Google Scholar 

  2. Taylor AE, Matalón S, Ward PA (1986) Physiology of oxygen radicals. American Physiological Society

    Google Scholar 

  3. Rice-Evans CA, Burdon RH (1994) Free radical damage and its control. Elsevier, Amsterdam

    Google Scholar 

  4. Das DK, Essman WB (1990) Oxygen radicals: systemic events and disease processes. Karger, Basel

    Google Scholar 

  5. Novelli GP (1992) Oxygen radicals in experimental shock: effects of spin-trapping nitrones in ameliorating shock pathophysiology. Crit Care Med 20:449–507

    Article  Google Scholar 

  6. Janzen EG, Kotake Y, Hinton RD (1992) Stabilities of hydroxyl radical spin adducts of PBN- type spin traps. Free Radie Biol Med 12:169–173

    Article  CAS  Google Scholar 

  7. Yudai Y, Tanaka J, Suzuki K et al (1989) Inhibitory effects of non steroidal anti-inflammatory drugs on superoxide generation. Chem Pharm Bull 39:1075–1077

    Article  Google Scholar 

  8. Mohsenin V, Gee JBL (1989) Oxidation of α1-protease inhibitor: role of lipid peroxidation products. J Appl Physiol 66:2211–2215

    Article  PubMed  CAS  Google Scholar 

  9. Redi H, Gasser H, Hallstrom S et al (1993) Radical related cell injury. In: Schlag G, Redi H (eds) Pathophysiology of shock, sepsis and organ failure. Springer, Berlin Heidelberg New York, pp 92–110

    Google Scholar 

  10. Novelli GP, Bracciotti G, Falsini S (1990) Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radie Biol Med 8:9–13

    Article  CAS  Google Scholar 

  11. Novelli GP, De Gaudio AR, Paternostro E et al (1993) Il significato dei radicali liberi dell’ossigeno nel trauma del sistema nervoso centrale. Minerva Anestesiol 59:719–731

    PubMed  CAS  Google Scholar 

  12. Zini I, Tomasi A, Grimaldi R et al (1989) Detection of free radicals during brain ischemia and reperfusion by spin trapping and microdialysis. Neurosci Lett 138:279–282

    Article  Google Scholar 

  13. Novelli GP, De Gaudio AR (1983) Oxygen free radicals in shock states. In: Lewis and Haglund (eds) Shock research. Elsevier, Amsterdam, pp 31–42

    Google Scholar 

  14. Novelli GP, Angiolini P, Tani R et al (1986) Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radie Res Commun 1:321–327

    Article  CAS  Google Scholar 

  15. Cheng HY, Liu T, Feuerstein G et al (1993) Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radie Biol Med 14:243–250

    Article  CAS  Google Scholar 

  16. Buettner GR (1987) Spin trapping: ESR parameters of spin adducts. Free Radie Biol Med 3: 159–203

    Google Scholar 

  17. Demling RH, Lalonde C (1990) Eariy postbum lipid peroxidation. Effect of ibuprofen and allopurinol. Surgery 107:85–93

    PubMed  CAS  Google Scholar 

  18. Kunimoto F, Morita T, Ogawa R et al (1987) Inhibition of lipid peroxidation improves survival rate of endotoxic rats. Circ Shock 21:15–22

    PubMed  CAS  Google Scholar 

  19. Bond RF, Haines GA, Johnson G (1988) The effect of allopurinol and catalase on cardiovascular hemodynamics during hemorrhagic shock. Circ Shock 25:139–151

    PubMed  CAS  Google Scholar 

  20. McKechnie K, Furman BL, Parratt JR (1986) Modification by oxygen free radical scavengers of the metabolic and cardiovascular effects of endotoxin infusion in conscious rats. Circ Shock 19:429–439

    PubMed  CAS  Google Scholar 

  21. Saez JC, Ward PH, Gunther B et al (1984) Superoxide radical involvement in the pathogenesis of bum shock. Circ Shock 12:229–239

    PubMed  CAS  Google Scholar 

  22. Broner CW, Shenep JL, Stidham GL et al (1989) Effect of antioxidants in experimental Escherichia coh septicemia. Circ Shock 29:77–92

    PubMed  CAS  Google Scholar 

  23. Bitterman H, Aoki N, Lefer AM (1988) Anti-shock effects of human superoxide dismutase in splanchnic artery occlusion shock. Proc Soc Exp Biol Med 188:265–271

    PubMed  CAS  Google Scholar 

  24. Brackett DJ, Lai EK, Lerner MR et al (1989) Spin trapping of free radicals produced “in vivo” in heart and liver during endotoxemia. Free Radic Res Commun 7:315–324

    Article  PubMed  CAS  Google Scholar 

  25. Hamburger SA, McCay PB (1989) Endotoxin-induced mortality in rats is reduced by nitrones. Circ Shock 29:329–334

    PubMed  CAS  Google Scholar 

  26. Lloyd SS, Chang AK, Taylor FB et al (1993) Free radicals and septic shock in primates: the role of tumor necrosis factor. Free Radic Biol Med 14:223–242

    Article  Google Scholar 

  27. Jackson SK, Stark JM, Rowlands CC et al (1989) Electron spin resonance detection of oxygen-centred radicals in murine macrophages stimulated with bacterial endotoxin. Free Radic Biol Med 7:165–170

    Article  PubMed  CAS  Google Scholar 

  28. Simons RK, Maier RV, Lennard ES (1987) Neutrophil function in a rat model of endotoxin- induced lung injury. Arch Surg 122:197–203

    Article  PubMed  CAS  Google Scholar 

  29. Vespasiano MC, Lewandoski JR, Zimmerman JJ (1993) Longitudinal analysis of neutrophil superoxide anion generation in patients with septic shock. Crit Care Med 21:666–672

    Google Scholar 

  30. Yoshikawa T, Takano H, Takahashi S et al (1994) Changes in tissue antioxidant enzyme activities and lipid peroxides in endotoxin-induced multiple organ failure. Circ Shock 42: 53–58

    PubMed  CAS  Google Scholar 

  31. Demling R, Nayak U, Ikenami K et al (1994) Comparison between lung and liver lipid peroxidation and mortality after zymosan peritonitis in the rat. Shock 2:222–227

    Article  PubMed  CAS  Google Scholar 

  32. Llesuy S, Evelson P, Gonzales-Flecha B et al (1994) Oxidative stress in muscle and liver of rats with septic syndrome. Free Radic Biol Med 16:445–451

    Article  PubMed  CAS  Google Scholar 

  33. Peavy DL, Fairchild EJ (1986) Evidence for lipid peroxidation in endotoxin poisoned mice. Infect Immunol 52:613–616

    CAS  Google Scholar 

  34. Keller GA, Barke R, Harty JT et al (1985) Decreased hepatic glutathione levels in septic shock. Arch Surg 120:941–945

    Article  PubMed  CAS  Google Scholar 

  35. Ishizaka A, Stephens K, Takelaar K et al (1988) Pulmonary edema after Escherichia coli peritonitis correlates with thiobarbituric acid reactive materials in bronchoalveolar lavage fluid. Am Rev Respir Dis 137:783–789

    PubMed  CAS  Google Scholar 

  36. Morgan RA, Manning PB, Coran AG et al (1988) Oxygen free radical activity during live E. coli septic shock in the dog. Circ Shock 25:319–323

    PubMed  CAS  Google Scholar 

  37. Ortolani O, Parlato V, Gravino E et al (1990) The monitorage of the perioxidative damage in patients undergoing cardiac surgery. Acta Anaesth Ital 41 [Suppl 2]: 127–130

    Google Scholar 

  38. Weitz ZW, Bimbaum AJ, Sobotka PA et al (1991) High breath pentane concentration during acute myocardial infarction. Lancet 337:933–935

    Article  PubMed  CAS  Google Scholar 

  39. Poli G, Biasi F, Chiarpotto E et al (1989) Lipid peroxidation in human disease: evidence of red cell oxidative stress after circulatory shock. Free Radic Biol Med 6:167–170

    Article  PubMed  CAS  Google Scholar 

  40. Keen RR, Stella L, Flanigan DP et al (1989) Differential detection of plasma hydroperoxides in sepsis. Crit Care Med 19:1114–1119

    Article  Google Scholar 

  41. Takeda K, Shimada Y, Amano M et al (1984) Plasma lipid peroxides and alpha tocopherol in critically ill patients. Crit Care Med 12:957–959

    Article  PubMed  CAS  Google Scholar 

  42. Novelli GP, Casali R, Bonizzoli M et al (1993) Aumento della permeabilità capillare provocato dall’endotossina: protezione con antiossidanti e glutatione. Minerva Anestesiol 59: 211–216

    PubMed  CAS  Google Scholar 

  43. Suffredini AF, Shelhamer JH, Neumann RD et al (1992) Pulmonary and oxygen transport effects of intravenously administered endotoxin in normal humans. Am Rev Respir Dis 145: 1398–1403

    PubMed  CAS  Google Scholar 

  44. Goris RJA, Boekoltz WKF, Ignas PT et al (1986) Multiple organ failure and sepsis without bacteria. Arch Surg 121:897–901

    Article  PubMed  CAS  Google Scholar 

  45. Deitch EA, Specian RD, Berg RD (1991) Endotoxin-induced bacterial translocation and mucosal permeability: role of xanthine oxidase, complement activation and macrophage products. Crit Care Med 19:785–791

    Article  PubMed  CAS  Google Scholar 

  46. Van Bebber IPT, Boekholz WKF, Goris RJA et al (1989) Neutrophil function and lipid peroxidation in a rat model of multiple organ failure. J Surg Res 47:471–475

    Article  PubMed  Google Scholar 

  47. Di Filippo A, Scardi S, Consalvo M et al (1994) Valutazione di un modello sperimentale di disfunzione multipla di organo (MODS). Minerva Anestesiol 60:157–164

    PubMed  Google Scholar 

  48. Di Filippo A, Scardi S, Consalvo M et al (1994) L’etano espirato come marker non invasivo della evoluzione della Multiple Organ Dysfunction Syndrome (MODS) sperimentale. Minerva Anestesiol 60:295–303

    PubMed  Google Scholar 

  49. Fächer R, Redl H, Frass M et al (1989) Relationship between neopterin and granulocyte plasma levels and the severity of multiple organ failure. Crit Care Med 17:221–226

    Article  Google Scholar 

  50. Tanaka H, Sugimoto H, Yoshioka T et al (1991) Role of granulocyte elastase in tissue injury in patients with septic shock complicated by multiple organ failure. Ann Surg 213:81–85

    Article  PubMed  CAS  Google Scholar 

  51. Malhck AA, Ishizaka A, Stephens KE et al (1989) Multiple organ damage caused by tumor necrosis factor and prevented by neutrophil depletion. Chest 95:1114–1120

    Article  Google Scholar 

  52. Maderazo EG, Woronick CL, Hickhin Bothan N et al (1990) Additional evidence of antioxidation as a possible mechanism of neutrophil locomotory dysfunction in blunt trauma. Crit Care Med 18:141–147

    Article  PubMed  CAS  Google Scholar 

  53. Mainous MR, Xu D, Deitch EA (1993) Role of xanthine oxidase and prostaglandins in inflammatory-induced bacterial translocation. Circ Shock 40:99–104

    PubMed  CAS  Google Scholar 

  54. Haglund U, Gerdin B (1991) Oxygen-free radicals (OFR) and circulatory shock. Circ Shock 34:405–411

    PubMed  CAS  Google Scholar 

  55. Nonaka A, Manabe T, Kyogoku T et al (1990) Changes in hpid peroxide and oxygen radical scavengers in cerulein-induced acute pancreatitis. Digestion 47:130–137

    Article  PubMed  CAS  Google Scholar 

  56. Deitch EA, Kemper AC, Specian RD et al (1992) A study of the relationship among survival, gut-origin sepsis, and bacterial translocation in a model of systemic inflammation. J Trauma 32:141–147

    Article  PubMed  CAS  Google Scholar 

  57. Waiden DL, McCutchan HJ, Enquist EG et al (1990) Neutrophils accumulate and contribute to skeletal muscle dysfunction after ischemia-reperfusion. Am J Physiol 259:H1809-H1812

    Google Scholar 

  58. Huribal M, Kumar R, Cunningham ME et al (1994) Endothelin-stimulated monocyte supematants enhance neutrophil superoxide production. Shock 1:184–187

    Article  PubMed  CAS  Google Scholar 

  59. Spain DA, Wilson MA, Bar-Natan MF et al (1994) Role of nitric oxide in the small intestinal microcirculation during bacteremia. Shock 2:41–46

    Article  PubMed  CAS  Google Scholar 

  60. Novelli GP, Livi P, Melani AM et al (1994) Il nitrossido nell’insufficienza circolatoria. Minerva Anestesiol 60 [Suppl l]:201–208

    Google Scholar 

  61. Tracey KJ, Lowry SF, Cerami A (1988) Cachectin/TNF in septic shock and septic adult respiratory distress syndrome. Am Rev Respir Dis 138:1377–1379

    PubMed  CAS  Google Scholar 

  62. Ward PA, Warren JS, Johnson KJ (1988) Oxygen radicals, inflammation and tissue injury. Free Radic Biol Med 5:403–408

    Article  PubMed  CAS  Google Scholar 

  63. Meier B, Radeke HH, Selle S et al (1989) Human fibroblast release reactive oxygen species in response to interleukin-1 or tumor necrosis factor-a. Biochem J 263:539–545

    PubMed  CAS  Google Scholar 

  64. Klausner JM, Paterson IS, Goldman G et al (1991) Interleukin-2-induced lung injury is mediated by oxygen free radicals. Surgery 109:169–175

    PubMed  CAS  Google Scholar 

  65. Pogrenbniak HW, Merino MJ, Hahn SM et al (1992) Spin trap salvage from endotoxemia: the role of cytokine down-regulation. Surgery 112:130–139

    Google Scholar 

  66. Feuerstein G, Siren AL (1988) Platelet-activating factor and shock. Prog Biochem Pharmacol 22:181–190

    PubMed  CAS  Google Scholar 

  67. Bengtsson A, Redl H, Paul E et al (1993) Complement and leukocyte activation in septic baboon. Circ Shock 39:83–88

    PubMed  CAS  Google Scholar 

  68. Schirmer WJ, Schirmer JM, Naff GB et al (1988) Systemic complement activation produces hemodynamic changes characteristic of sepsis. Arch Surg 123:316–318

    Article  PubMed  CAS  Google Scholar 

  69. Reilly PM, Schiller HJ, Bulkley GB (1991) Pharmacologic approach to tissue injury mediated by free radicals and other active oxygen metabolites. Am J Surg 161:488–501

    Article  PubMed  CAS  Google Scholar 

  70. Suzuki M, Asako H, Kubes P et al (1991) Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 42:125–138

    Article  PubMed  CAS  Google Scholar 

  71. Formigh L, Ibba-Manneschi L, Adembri C (1995) Expression of E-selectin in ischemic and reperfused human skeletal muscle. Ultrastruct Pathol 19:193–200

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Novelli, G.P., Di Filippo, A., Adembri, C. (1996). Role of Free Radicals in Critical Illness. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics