Skip to main content
  • 170 Accesses

Abstract

Measurements of blood lactate levels can be very useful for detecting the presence of tissue underperfusion and for guiding therapy. Increased blood lactate levels usually reflect an imbalance between the oxygen demand and the oxygen supply to the cells, but other conditions may also be responsible. The present chapter first reviews the biochemistry of blood lactate, then reviews the clinical conditions associated with hyperlactatemia and finally discusses some therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang H, Vincent JL (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148:867–871

    Article  PubMed  CAS  Google Scholar 

  2. Iberti TJ, Leibowitz AB, Papadakos PJ et al (1990) Low sensitivity of the anion gap as a screen to detect hyperlactatemia in critically ill patients. Crit Care Med 18:275–277

    Article  PubMed  CAS  Google Scholar 

  3. Poortmans JR, Bossche JD, Leclercq R (1978) Lactate uptake by inactive forearm during progressive leg exercise. J Appl Pysiol 45:835–839

    CAS  Google Scholar 

  4. Freyschuss U, Strandell T (1967) Limb circulation during arm and leg exercise in supine position. J Appl Physiol 23:163–170

    PubMed  CAS  Google Scholar 

  5. Watt PW, MacLennan PA, Hundai HS et al (1988) L(+)-Lactate transport in perfused rat skeletal muscle: kinetic characteristics and sensitivity to pH and transport inhibitors. Biochem Biophys Acta 944:213–222

    Article  PubMed  CAS  Google Scholar 

  6. Graham TE, Barclay JK, Wilson BA (1986) Skeletal muscle lactate release and glycolytic intermediates during hypercapnia. J Appl Physiol 60:568–575

    PubMed  CAS  Google Scholar 

  7. Gutierrez G, Hurtado FJ, Gutierrez AM et al (1993) Net uptake of lactate by rabbit hindlimb during hypoxia. Am Rev Respir Dis 148:1204–1209

    PubMed  CAS  Google Scholar 

  8. Hurtado FJ, Gutierrez AM, Silva R et al (1992) Role of tissue hypoxia as the mechanism of lactic acidosis during E. coh endotoxemia. J Appl Physiol 72:1895–1901

    PubMed  CAS  Google Scholar 

  9. Vary TC, Siegel JH, Nakatani T et al (1986) Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 250:E634-E640

    PubMed  CAS  Google Scholar 

  10. Preiser JC, Moulart D, Vincent JL (1990) Dichloroacetate administration in the treatment of endotoxin shock. Circ Shock 30:221–228

    PubMed  CAS  Google Scholar 

  11. Curtis SE, Cain SM (1992) Regional and systemic oxygen delivery/uptake relations and lactate flux in hyperdynamic endotoxin treated dogs. Am Rev Respir Dis 145:348–354

    PubMed  CAS  Google Scholar 

  12. Stacpoole PW, Wright EC, Baumgartner TG et al (1994) Natural history and course of acquired lactic acidosis in adults. Am J Med 97:47–54

    Article  PubMed  CAS  Google Scholar 

  13. Mela LM, Miller LD, Nicholas GG (1972) Influence of cellular acidosis and altered cation concentrations on shock-induced mitochondrial damage. Surgery 72:102–110

    PubMed  CAS  Google Scholar 

  14. Vitek V, Cowley RA (1971) Blood lactate in the prognosis of various forms of shock. Ann Surg 173:308–313

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg JC, Rush BE (1986) Blood lactic acid levels in irreversible haemorrhagic and lethal endotoxin shock. Surg Gynecol Obstet 126:1247–1250

    Google Scholar 

  16. Vincent JL, Dufaye P, Berre J et al (1983) Serial lactate determinations during circulatory shock. Crit Care Med 11:449–451

    Article  PubMed  CAS  Google Scholar 

  17. Haupt MT, Gilbert EM, Carlson RW (1985) Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev Respir Dis 131:912–916

    PubMed  CAS  Google Scholar 

  18. Gilbert EM, Haupt MT, Mandanas RY et al (1986) The effect of fluid loading, blood transfusion and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134:873–878

    PubMed  CAS  Google Scholar 

  19. Vincent JL, Roman A, DeBacker D et al (1990) Oxygen uptake/supply dependency: effects of short-term dobutamine infusion. Am Rev Respir Dis 142:2–8

    PubMed  CAS  Google Scholar 

  20. Fellows IW, Bennett T, Macdonald IA (1985) The effect of adrenaline upon cardiovascular and metabolic functions in man. Clin Sci 69:215–222

    PubMed  CAS  Google Scholar 

  21. Annat G, Viale JP, Percival C et al (1986) Oxygen delivery and uptake in the adult respiratory distress syndrome: lack of relationship when measured independently in patients with normal blood lactate concentrations. Am Rev Respir Dis 133:999–1001

    PubMed  CAS  Google Scholar 

  22. Kruse JA, Zaidi SA, Carlson RW (1987) Significance of blood lactate levels in critically ill patients with liver disease. Am J Med 83:77–82

    Article  PubMed  CAS  Google Scholar 

  23. Peretz DI, McGregor M, Dossetur JB (1964) Lactic acidosis: a chnically significant aspect of shock. Can Med Assoc J 90:673–675

    PubMed  CAS  Google Scholar 

  24. Peretz DI, Scott HM, Duff J et al (1965) The significance of lactacidemia in the shock syndrome. Ann NY Acad Sci 119:1133–1141

    Article  PubMed  CAS  Google Scholar 

  25. Weil MH, Afifi A A (1970) Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001

    PubMed  CAS  Google Scholar 

  26. Bakker J, Leon M, Coffemils M et al (1992) Serial blood lactate levels can predict multiple organ failure in septic shock patients. Crit Care Med 20:S56 (abstr)

    Google Scholar 

  27. Aduen J, Bernstein WK, Khastgir T et al (1994) The use and clinical importance of a substrate-specific electrode for rapid determination of blood lactate concentrations. JAMA 272:1678–1685

    Article  PubMed  CAS  Google Scholar 

  28. Bakker J, Coffemils M, Leon M et al (1991) Blood lactate levels are superior to oxygen derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  PubMed  CAS  Google Scholar 

  29. Bakker J, Gris P, Coffemils M et al (1995) Serial blood lactate levels can predict the development of multiple organ failure following septic shock. Am J Surg (in press)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Vincent, JL. (1996). Lactic Acidosis: Diagnosis and Treatment. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics