Skip to main content
  • 166 Accesses

Abstract

In normal conditions, the kidney receives 20%-25% of the cardiac output (VB). Thus, it not surprising that several blood-borne endogenous or exogenous nephrotoxic substances (radiocontrast media, amynoglycosides, pigments, immunocomplexes etc.) can cause a disturbance of the renal function, which is principally be related to the damage of the renal microvascular network and possibly leading to acute renal failure (ARF). However, the term “renal vascular injury” usually indicates the pathophysiologic consequences of the shortage of renal blood supply occurring in many clinical settings, including trauma and hemorrhage, surgical interventions and burns, ultimately leading to the occurrence of the prerenal ARF. Due to several pathophysiological factors, the renal medulla is particularly at risk of ischemic damage (1), and the occurrence of ARF is usually associated to extensive anatomofunctional damage of the deepest region of the kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Symon Z, Brezis M (1995) Pathophysiology of acute renal failure. In: Bellomo R, Ronco C (eds) Acute renal failure in the critically ill. Springer, Berlin Heidelberg New York, pp 58–63

    Chapter  Google Scholar 

  2. Leonhardt KO, Landes RR (1963) Oxygen tension of the urine and renal structures. New Engl JMed 269:115–121

    Article  CAS  Google Scholar 

  3. Brezis M, Rosen S (1995) Hypoxia of the renal medulla: its imphcations for disease. New Engl J Med 332:647–655

    Article  PubMed  CAS  Google Scholar 

  4. Morissey JJ, McCracken R, Kaneto H, Vehaskari M, Montani D, Khlar S (1994) Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int 45:998–1005

    Article  Google Scholar 

  5. Dinour D, Brezis M (1991) Effects of adenosine on intrarenal oxygenation. Am J Physiol 261:F787-F791

    PubMed  CAS  Google Scholar 

  6. Levin ER (1995) Mechanisms of disease: endothelins. New Engl J Med 333:356–363

    Article  PubMed  CAS  Google Scholar 

  7. Odeh M (1991) Mechanisms of diseases: the role of reperfusion-induced injury in the pathogenesis of the crush syndrome. New Engl J Med 324:1417–1422

    Article  PubMed  CAS  Google Scholar 

  8. Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43:1160–1178

    Article  PubMed  CAS  Google Scholar 

  9. Brezis M, Rosen S, Silva P, Spokes K, Epstein FH (1984) Polyene toxicity in renal medulla: injury mediated by transport activity. Science 224:66–8

    Article  PubMed  CAS  Google Scholar 

  10. Heyman SN, Stillmn IE, Brezis M, Epstein FH, Spokes K, Rosen S (1993) Chronic amphotericin nephropathy: morphometric, electron microscopic and functional studies. J Am Soc Nephrol 4:69–80

    PubMed  CAS  Google Scholar 

  11. Agmon Y, Brezis M (1993) Effects of nonsteroidal anti-inflammatory drugs upon intrarenal blood flow: selective medullary hypoperfusion. Exp Nephrol 1:357–363

    PubMed  CAS  Google Scholar 

  12. Brezis M, Rosen S, Epstein FH (1991) Acute renal failure. In: Brenner BM, Rector EC (eds) The kidney, 4th edn. Saunders, Philadelphia, pp 993–1061

    Google Scholar 

  13. Brenner M, Schaer GL, Mallory D, Suffredini A, Parrillo JE (1990) Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest 98:170–179

    Article  PubMed  CAS  Google Scholar 

  14. Haywood GA, Stewart JT, Counihan PJ et al (1992) Validation of bedside measurements of absolute human renal blood flow by a continuous thermodilution technique. Crit Care Med 20: 659–664

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes? Physiol Rev 71: 1081–1115

    PubMed  CAS  Google Scholar 

  16. Dawson JL (1965) Postoperative renal function in obstructive jaundice: effect of a mannitol diuresis. Br Med J 1:82–86

    Article  PubMed  CAS  Google Scholar 

  17. Eneas JF, Shoenfeld PJ, Humphreys MH (1979) The effect of infusion of mannitol-sodium bicarbonate on the clinical course of myoglobinuria. Arch Intern Med 139:801–805

    Article  PubMed  CAS  Google Scholar 

  18. Heyman SN, Brezis M, Epstein FH, Spokes K, Silva P, Rosen S (1991) Early renal medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int 40:632–642

    Article  PubMed  CAS  Google Scholar 

  19. Davis RD, Lappas DG, Kirklin JK, Buckley MJ, Lowenstein (1982) Acute oliguria after cardiopulmonary bypass: renal functional improvement with low-dose dopamine infusion. Crit Care Med 10, 12:852–856

    Article  PubMed  CAS  Google Scholar 

  20. Lee MR (1993) Dopamine and the kidney: ten years on. Clin Sci 84:357–375

    PubMed  CAS  Google Scholar 

  21. Swigert TH, Clayton Roberts L, Valek TR et al (1991) Effect of intraoperative low-dose dopamine on renal function in liver transplant recipients. Anesthesiology 75:571–576

    Article  Google Scholar 

  22. Desjars P, Pinaud M, Potei G et al (1987) A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 15:134–137

    Article  PubMed  CAS  Google Scholar 

  23. Hesselvik JF, Brodin B (1989) Low dose norepinephrine in patients with septic shock and oliguria: effects on afterload, urine flow, and oxygen transport. Crit Care Med 17:179–180

    Article  PubMed  CAS  Google Scholar 

  24. Redl-Wenzl EM, Armbruster C, Edelmann G et al (1993) The effects of norepinephrine on hemodynamics and renal function in severe septic shock. Crit Care Med 19:151–154

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Berlot, G. (1996). Perfusion in Renal Dysfunction. In: Gullo, A. (eds) Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2203-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2203-4_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-3-540-75014-7

  • Online ISBN: 978-88-470-2203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics