Skip to main content

HBO in Orthopedic Disorders

  • Chapter
Handbook on Hyperbaric Medicine

Abstract

Every trauma determines a state of local hypoxia that follows tissular ischaemia, because of anatomical vascular lesions or functional obstacles, which interfere with cellular metabolic processes. In soft tissues the post-traumatic interruption of the perfusion and oxygenation provokes mortification and necrosis. In the bones, the damage in the blood supply, which we can observe after a fracture, provokes an ischaemic-hypoxic state that interferes with the repairing processes that originate in the post-fracture haematoma and are completed only in normal oxygen conditions, causing a delay in the formation of the bone callus and, consequently, in the consolidation of the fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thibodeau A (1986) Fisiologia Umana- Casa Ed. Ambrosiana

    Google Scholar 

  2. Boume GH - The biochemistry and biology of the bone. Second Ed. vol 3. Development and growth. New York and London-Academic Press

    Google Scholar 

  3. Davis JC (1978) Refractory osteomyelitis of the extremities and axial skeleton. In: Davis JC, Hunt TK Hyperbaric oxygen therapy. Bethesda, MD: Undersea Medical Society, pp 217–227

    Google Scholar 

  4. Oriani G, Gaietta T (1986) Oxygen hyperbaric therapy for orthopaedic disorders. Proceedings of Seventh Congress of SIMSI (Italian Society for Underwater Medicine). Ed. Mari Lanza Palermo, pp 121–132

    Google Scholar 

  5. Oriani G, Faglia E (1989) Ossigenoterapia Iperbarica. Applicazioni cliniche. Ed. SIO Milano

    Google Scholar 

  6. Mally R, Kolodny S (1977) Osteogenesis enhancement. Hyperbaric oxygen therapy by Davis JC, Hunt TK Undersea Medical Society, Bethesda MD, pp 181–285

    Google Scholar 

  7. Penttinen R, Niinikoski J, Kulonen E (1972) Hyperbaric oxygenation and fracture healing. A biochemical study with rats. Acta Chir Scand, pp 138–139

    Google Scholar 

  8. Niinikoski J (1977) Oxygen and wound healing. Clin Plast Surg 4, pp 361–374

    Google Scholar 

  9. Han AW (1971) Repair and transplantation of bone vol, pp 337–339 Academic Press, New York

    Google Scholar 

  10. Basset CAL, Herzman I (1961) Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vitro nature 190: 460–461

    Google Scholar 

  11. Hunt TK, Pai MP (1972) The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 135: 561–567

    PubMed  CAS  Google Scholar 

  12. Hunt TK, Niinikoski J, Zederfeldt BH (1977) Oxygen in wound healing enhancement: cellular effects of oxygen in hyperbaric oxygen therapy. Davis JC, Hunt TK eds, Undersea medical Society, Bethesda MD, pp 111–122

    Google Scholar 

  13. Ketchums A, Thomas AN, Hall AD (1970) Angiographic studies of the effects of hyperbaric oxygen on burn wound revascularization. Proc Fourth International Congress of Hyperbaric Medicine - J. Wada, T. Iwa eds Tokyo: Igaku Shoin, p 388

    Google Scholar 

  14. Melerba F, Oriani G (1981) L oxygenoterapie hyperbare et les traumatisme du pied. Estratto da Chirurgia del piede, vol 5 n° 3–4 Luglio-Dicembre

    Google Scholar 

  15. Haimovici H (1973) Myopathic nephrotic metabolic syndrome associated with massive acute arterial occlusion. J Cardiovasc Surg

    Google Scholar 

  16. Strauss MB, Hart GB (1983) Hyperbaric oxygen and the skeletal-muscle compartment syndrome. Contemp Orthop 18: 167–174

    Article  Google Scholar 

  17. Sheffield J (1985) Tissue oxygen measurements with respect to soft tissue wound healing with normobaric and hyperbaric oxygen. HBO Rev 6: 18–46

    Google Scholar 

  18. Strauss MB, Hart GB (1984) Crush injury and the role of hyperbaric oxygen. Topics in Emergency Med 6: 6–24

    Google Scholar 

  19. Miller HH, Welch CS (1949) Quantitatives studies of the time factor in arterial injuries. Ann Surg 130: 428–438

    Article  Google Scholar 

  20. Hargenas AR (1981) Compartment syndrome and Volkman’s contracture. Philadelphia: WB Saunders, pp 41–70

    Google Scholar 

  21. Russel RC, Roth AC, Kucan JW, Zook EG (1989) Reperfusion injury and oxygen free radicals. A review. J Reconstr Microsurg 5: 79–84

    Article  Google Scholar 

  22. Angel MF, Ramasastry SS, Swartz WM (1987) Free radicals: basic concepts concerning their chemistry, pathophysiology and relevance to plastic surgery. Plast Reconstr Surg 79: 990

    Article  PubMed  CAS  Google Scholar 

  23. Mason PN, Anthenelli PRM, Im GM The role of oxygen free radicals in ischemic tissue injury in island skin flaps.

    Google Scholar 

  24. Zamboni WA, Roth AC, Russel RC, Graham B, Sichy H, Kucan JO (1993) Morphological analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of HBO. Plast Reconstr Surg 91: 1110–1123

    Article  PubMed  CAS  Google Scholar 

  25. Feng LJ, Berger BE, Lysz TV, Shaw WW (1988) Vasoactive prostaglandins in the impending no-flow primary disturbance in microvascular tone. Plast Reconstr Surg 91: 755

    Google Scholar 

  26. Mathieu D, Wattel F, Bouacour G, Billard V, Defoin JF (1990) Post-traumatic limb ischemia: predicting of final outcome by transcutaneous oxygen measurements in hyperbaric oxygen. J Trauma 30: 307–314

    Article  PubMed  CAS  Google Scholar 

  27. Zamboni WA, Roth AC, Bergman BA, Russel RC, Stephenson LL (1992) Experimental evaluation of oxygen in the treatment of ischemic skeletal muscle. Undersea Biomed Res 19: 78

    Google Scholar 

  28. Oriani G (1992) L’ossigenoterapia iperbarica nel trauma. Ed. Caravatti-Varese, pp 53–62

    Google Scholar 

  29. Champion WM, McSherry CK, Goulian D (1967) Effect of hyperbaric oxygen on survival of pedicled skin flaps. J Surg Res 7: 583–586

    Article  PubMed  CAS  Google Scholar 

  30. McFarlane RM, Wermuth RE (1966) The use of hyperbaric oxygen to prevent necrosis in experimental pedicle flaps and composite skin grafts. Plast Reconstr Surg 37: 422–430

    Article  PubMed  CAS  Google Scholar 

  31. Shulman AG, Viron HL (1967) Influence of hyperbaric oxygen and multiple skin allografts on the healing of skin wounds. Surgery 62: 1051–1058

    PubMed  CAS  Google Scholar 

  32. Oriani G, Barnini C (1984) Ossigenoterapia iperbarica e patologia ortopedica. Ed. IOG Milano

    Google Scholar 

  33. Davis JC, Hunt TK (1977) Refractory osteomyelitis of the extremities. Hyperb Oxygen Ther 217–225

    Google Scholar 

  34. Bakker DJ (1987) Necrotizing soft tissue infections. J Hyperb Med 2 (3): 161–169

    Google Scholar 

  35. Strauss MB (1980) Chronic refractory osteomyelitis: review and role of hyperbaric oxygen. HBO Rev 1: 231–255

    Google Scholar 

  36. Mader JT, Adams KR, Sutton TE (1987) Infections diseases. Pathophysiology and mechanism of hyperbaric oxygen. J Hyperb Med 2 (3): 133–151

    Google Scholar 

  37. Slack WK, Thomas DA, Perrins DJD (1965) Hyperbaric oxygenation in chronic osteomyelitis. Lancet 1: 1093–1094

    Article  PubMed  CAS  Google Scholar 

  38. Mader JT, Brown GL, Guckian JC, Wells CH, Renarz JA (198o) A mechanism for the amelioration by oxygen hyperbaric on experimental staphylococcal osteomyelitis in rabbit. J Infect Dis

    Google Scholar 

  39. Morrey BF, Dunn JM, Heimbach RD et al. (1979) Hyperbaric oxygen and chronic osteomyelitis. Clin Orthop Rel Res 144: in-127

    Google Scholar 

  40. Doury P (1989) Algodistrophies. Encycl Med Chir Ortopedie et traumatologie 10: 1486A 10

    Google Scholar 

  41. Amor B, Tallet F, Raichvarg D (1982) Algodistrofies et anomalies metaboliques Rev Rhumat 49: 827–833

    CAS  Google Scholar 

  42. Basle MF, Rebel A, Renier JC (1983) Bone tissue in reflex sympathetic dystrophy syndrome Sudek’s atrophy: structural and ultra-structural studies. Metab Bone Dis Relat Res 4: 305–311

    Article  PubMed  CAS  Google Scholar 

  43. Ogilvie-Harris DJ, Roscoe M (1987) Reflex sympathetic dystrophy of the knee. J Bone Joint Surg 69-B, 804–806

    Google Scholar 

  44. Schwartzman RJ, McLellan TL (1987) Reflex sympathetic dystrophy: a review. Arch Neurol 44: 555–561

    Article  PubMed  CAS  Google Scholar 

  45. Melzack R, Wall PD (1965) Pain mechanism: a new theory. Science 150: 971–979

    Article  PubMed  CAS  Google Scholar 

  46. Doury P, Dirheimer Y, Pattin S (1981) Algodistrophy. Diagnosis and therapy of a frequent disease of the locomotor apparatus, vol. Springer Verlag Ed. Berlin Heidelberg NewYork, p 165

    Google Scholar 

  47. Druker WR, Hubay CA, Holden WD, Bukovnic JA (1959) Pathogenesis of post-traumatics sympathetic dystrophy. Am Surg, pp 454–465

    Google Scholar 

  48. Oriani G, Tecchio G, Meazza D, Turati A (1990) The Sudek’s knee syndrome: treatment with hyperbaric oxygen. Proc of Xth International Congress on HBO Amsterdam, pp 163–166

    Google Scholar 

  49. Drapanas T, Hewitt RL, Weichert RT et al. (1970) Civilian vascular injuries. A critical appraisal of three decades of management. Ann Surg 172: 351–360

    Article  PubMed  CAS  Google Scholar 

  50. Keeley SB, Sydner WH, Weigelt JA (1983) Arterial injuries below the knee: fifty-one patients with eighty-two injuries. J Trauma 23: 285–292

    Article  PubMed  CAS  Google Scholar 

  51. Lange RH, Bach AW, Hansen ST et al. (1985) Open tibial fractures with associated vascular injuries: prognosis for limb salvage. J Trauma 25: 203–208

    Article  PubMed  CAS  Google Scholar 

  52. Strauss MB (1981) Role of hyperbaric oxygen therapy in acute ischemias and crush injuries–an orthopedic perspective. HBO Rev 2: 87–106

    Google Scholar 

  53. Shupak A, Gozal D, Ariel A, Melamed Y, Katz A (1987) Hyperbaric oxygenation in acute peripheral post-traumatic ischemia. J Hyper Med 2: 7–14

    Google Scholar 

  54. Gustillo R, Williams DN (1984) The use of antibiotics in the managements of open fractures. Orthopaedics 7: 1617–1619

    Google Scholar 

  55. Byrd HS, Spicer TE, Cierny G (1985) Management of open tibial fractures. Plast Reconstr Surg 76: 719–728

    Article  PubMed  CAS  Google Scholar 

  56. Gustillo RB, Mendoza RM, Williams DN (1984) Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24: 742–746

    Article  Google Scholar 

  57. Swartz WM, Mears DC (1985) The role of free tissue transfer in lower extremity reconstruction. Plast Reconstr Surg 76: 364–373

    Article  PubMed  CAS  Google Scholar 

  58. Danckwardt-Lillieström G, Lorenzi GL, Olerud S (1970) Intramedullary nailing after reaming, an investigation on the healing process in osteomized rabbit tibias. Acta Orthop Scand (Suppl) 134: 1–78

    Google Scholar 

  59. Byrd HS, Cierny GH, Tebbets JB (1981) The management of open tibial fractures with associated soft-tissue loss: external pin fixation with early flap coverage. Plast Reconstr Surg 68: 73–79

    Article  PubMed  CAS  Google Scholar 

  60. Gustillo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones. J Bone Joint Surg 58A: 453–458

    Google Scholar 

  61. Pierce EC II (1969) Pathophysiology, apparatus and methods, including the special techniques of hypothermia and hyperbaric oxygen. In: Pierce EC II (ed) Extracorporeal circulation for open heart surgery. Charles C. Thomas Springfield, Ill, pp 83–84

    Google Scholar 

  62. Krogh A (1919) The number and distribution of capillaries in muscle with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52: 409–415

    PubMed  CAS  Google Scholar 

  63. Gottrup F, Firmin R, Hunt TK, Mathes SJ (1984) The dynamic properties of tissue oxygen in healing flaps. Surgery 95: 527

    PubMed  CAS  Google Scholar 

  64. Guyton AC, Ross JM, Cornier D et al. (1964) Evidence for tissue oxygen demand as the major factor causing autoregulation. Circ Res 15 (Suppl): 60–69

    PubMed  Google Scholar 

  65. Meijne NG (1965) Flow distribution changes during extracorporeal circulation at two atmospheres absolute. In: Ledingham IMCA (ed) Hyperbaric oxygenation. Livingstone, Edinburgh and London, pp 136–148

    Google Scholar 

  66. Wang MCH, Reich T, Lesho WH et al. (1966) Hyperbaric oxygenation: oxygen exchange in an acutely ischemic vascular bed. Surgery 59: 94-loi

    Google Scholar 

  67. Stalker CG, McEwan AJ, Ledhingham IMCA (1973) The effect of increased 02 in acute limb ischemia. Br J Surg 60: 144–148

    Article  PubMed  CAS  Google Scholar 

  68. Bird AD, Telfer ABM (1965) Effect of hyperbaric oxygen on limb circulation. Lancet 1: 355–356

    Article  PubMed  CAS  Google Scholar 

  69. Sullivan SM, Johnson PC (1981) Effect of oxygen on blood flow autoregulation in cat sartorius muscle. Am J Physiol 41: H807 - H815

    Google Scholar 

  70. Nylander G, Lewis D, Nordstrom H, Larson J (1985) Reduction of postischemic edema with hyperbaric oxygen. Plast Reconstr Surg 76: 595–603

    Google Scholar 

  71. Skyhar MJ, Hargens AR, Strauss MB, Gershuni DH, Hart GB, Akeson WH (1986) Hyperbaric oxygen reduces edema and necrosis of skeletal muscle in compartment syndromes associated with hemorrhagie hypotension. J Bone Joint Surg 68A: 1218–1224

    PubMed  CAS  Google Scholar 

  72. Strauss MB, Hargens AR, Gershuni D, Greenberg DA, Crenshaw AG, Hart GB, Akeson WH (1983) Reduction of skeletal muscle necrosis using intermittent hyperbaric oxygen in a model of compartment syndrome. J Bone Joint 65A: 656–662

    CAS  Google Scholar 

  73. Nylander G, Nordstrom H, Lewis D, Larson J (1987) Metabolic effects of hyperbaric oxygen in postischemic muscle. Plast Reconstr Surg 79: 91–96

    Article  PubMed  CAS  Google Scholar 

  74. Hunt TK, Linsey M, Grislis G, Sonne M, Jawetz E (1975) The effect of different ambient oxygen tensions of wound infection. Ann Surg 181: 35–39

    Article  PubMed  CAS  Google Scholar 

  75. Mader JT, Brown GI, Guckian JC, Wells CH, Reinarz JA (1980) A mechanism for the amelioration by hyperbaric oxygen of experimental staphylococcal osteomyelitis in rabbits. J Infect Dis 142: 915–922

    Article  PubMed  CAS  Google Scholar 

  76. MacLennan JD (1962) The histotoxic clostridial infections of man. Bacteriol Rev 26: 177–276

    PubMed  CAS  Google Scholar 

  77. Demello FG, Haglin JJ, Hitchcock CR (1973) Comparative study of experimental Clostridium perfringens infection in dogs treated with antibiotics, surgery and hyperbaric oxygen. Surgery 73: 936–941

    PubMed  CAS  Google Scholar 

  78. Riseman JA, Zamboni WA, Curtis A, Graham DR, Konrad HR, Ross DS (1990) Hyperbaric oxygen therapy for necrotizing fasciitis reduces mortality and the need for debridements. Surgery 108: 847–850

    PubMed  CAS  Google Scholar 

  79. Hunt TK, Pai MP (1972) The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg Gynecol Obstet 135: 561–567

    PubMed  CAS  Google Scholar 

  80. Hunt TK, Nunikoski J, Zederfeldt BH, Silver IA (1977) Oxygen in wound healing enhancement: cellular effects of oxygen. In: Davis JC, Hunt TK (eds) Hyperbaric oxygen therapy. Undersea Medical Society, Bethesda, pp 111–122

    Google Scholar 

  81. Manson PN, Im MJ, Myers RAM (1980) Improved capillaries by hyperbaric oxygen in skin flaps. Surg Forum 31: 564–567

    Google Scholar 

  82. Kivisaari J, Niiniskoski J (1975) Effects of hyperbaric oxygenation and prolonged hypoxia on the healing of open wounds. Acta Chir Scand 141: 14–19

    PubMed  CAS  Google Scholar 

  83. Smith G, Stevens J, Griffiths JC et al. (1961) Near avulsion of foot treated by replacement and subsequent prolonged exposure of patients to oxygen a two atmospheres pressure. Lancet 2: 1122–1123

    Article  PubMed  CAS  Google Scholar 

  84. Slack WK, Thomas DA, De Jode LRJ (1966) Treatment of trauma, ischemic disease of limbs and varicose ulceration. In: Brown IW Jr, Cox BG (ed) Proc Third International Congress on Hyperbaric Medicine. Washington; DC: National Academy of Sciences, National Research Council, pp 621–624

    Google Scholar 

  85. Szekely 0, Szanto G, Takats A (1973) Hyperbaric oxygen therapy in injured subjects. Injury 4294–300

    Google Scholar 

  86. Monies-Chas I, Hashmonai M, Hoerer D et al. (1977) Hyperbaric oxygen treatment as an adjunct to reconstructive vascular surgery in trauma. Injury 8: 274–277

    Article  Google Scholar 

  87. Loder RE (1979) Hyperbaric oxygen therapy in acute trauma. Ann R Coll Surg Engl 61: 472

    PubMed  CAS  Google Scholar 

  88. Schramek A, Hashmonai M (1977) Vascular injuries in the extremities in battle casualties. Br J Surg 64: 644–648

    Article  PubMed  CAS  Google Scholar 

  89. Bouachour G, Cronier P, Gouello JP, Toulemonde JL, Talha A, Alquier P (1994) Result of a randomized prospective clinical trial of hyperbaric oxygen therapy versus placebo in crush injuries. HBO improves wound healing and reduces the need or surgery. In: Cimsit M (ed) Proc XXth Annual Meeting of EUBS on Diving and Hyperbaric Medicine. Istanbul, p 172

    Google Scholar 

  90. Sheffield PJ, Workman WT (1985) Noninvasive tissue oxygen measurements in patients administered normobaric and hyperbaric oxygen by mask. Hyperb Oxygen Rev 6: 47–62

    Google Scholar 

  91. Mathieu D, Wattel F, Bouachour G, Billard V, Defoin JF (1990) Post-traumatic limb ischemia. Prediction of final outcome by transcutaneous oxygen measurements in hyperbaric oxygen. J Trauma 20: 307–314

    Article  Google Scholar 

  92. Bouachour G, Gouello JP, Perrotin F, Alquier P (1994) Usefulness of transcutaneous oxygen monitoring in hyperbaric oxygen in patients with crush injuries. Results of a randomized prospective study. In: Cimsit M (ed) Proc XXth Annual Meeting of EUBS on Diving and Hyperbaric Medicine. Istanbul p 393

    Google Scholar 

  93. Strauss MB (1988) Cost-effective issues in HBO therapy: complicated fractures. J Hyperb Med 3: 199–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Italia, Milano

About this chapter

Cite this chapter

Malerba, F., Oriani, G., Farnetti, A., Bouachour, G., Cronier, P. (1996). HBO in Orthopedic Disorders. In: Oriani, G., Marroni, A., Wattel, F. (eds) Handbook on Hyperbaric Medicine. Springer, Milano. https://doi.org/10.1007/978-88-470-2198-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2198-3_13

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2200-3

  • Online ISBN: 978-88-470-2198-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics