Skip to main content

Genetic Regulation of Nerve Cell Death/Glial Activation and Protective Effects of Myelin Basic Protein Autoimmune Neurotrophin Production in Mechanically Induced Neurodegeneration

  • Chapter
Early Indicators Early Treatments Neuroprotection in Multiple Sclerosis

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 147 Accesses

Abstract

The critical pathogenic steps leading to clinical multiple sclerosis (MS) are generally believed to be regulated by several different genes, with five to ten genes theoretically having a major impact on disease susceptibility [1-3]. This is supported by epidemiological data demonstrating a considerable lowering of concordance rates from monozygotic to dizygotic twins [4]. It has been known for approximately 30 years that certain haplotypes of the HLA gene region predispose for MS. In particular, individuals carrying HLA DR2 (DRB1*1501DRB5*0101-DQA1*0102-DQB1*0602) are at higher risk. HLA DR3 provides some risk increase, while in certain populations DR4 may be important [5, 6]. So far the HLA complex remains the only well-established genome region known to influence MS [4, 7-9], in spite of the fact that estimations of the relative genetic risk conveyed by the HLA complex alone vary between 5% and 60% [7, 10, 11]. Notably, no single HLA type seems to exclude MS. It is therefore clear that as yet unidentified genes residing outside the HLA must also be of importance for disease susceptibility in MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46:222–228

    PubMed  CAS  Google Scholar 

  2. Risch N (1990) Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet 46:229–241

    PubMed  CAS  Google Scholar 

  3. Risch N (1990) Linkage strategies for genetically complex traits. III. The effect of marker polymorphism on analysis of affected relative pairs [published erratum appears in Am J Hum Genet 1992 51:673–675]. Am J Hum Genet 46:242–253

    PubMed  CAS  Google Scholar 

  4. Ebers GC, Bulman DE, Sadovnick AD et al (1986) A population-based study of multiple sclerosis in twins. N Engl J Med 315:1638–1642

    Article  PubMed  CAS  Google Scholar 

  5. Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J (2000) HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 48:211–219

    Article  PubMed  CAS  Google Scholar 

  6. Marrosu MG, Murru MR, Costa G, Murru R, Muntoni F, Cucca F (1998) DRB1DQA1–DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet 7:1235–1237

    Article  PubMed  CAS  Google Scholar 

  7. Olerup O, Hillert J (1991) HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens 38:1–15

    Article  PubMed  CAS  Google Scholar 

  8. Sawcer S, Jones H, Feakes R, Gray J, Smaldon N, Chataway J, Robertson N, Clayton D, Goodfellow P, Compston A (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet 13:464–468

    Article  PubMed  CAS  Google Scholar 

  9. Haines JL, Ter-Minassian M, Bazyk A et al (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nat Genet 13:469–471

    Article  PubMed  CAS  Google Scholar 

  10. Ebers GC, Sadovnick AD (1994) The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 54:1–17

    Article  PubMed  CAS  Google Scholar 

  11. Haines JL, Terwedow HA, Burgess K, Pericak-Vance MA, Rimmler JB, Martin ER, Oksenberg JR, Lincoln R, Zhang DY, Banatao DR, Gatto N, Goodkin DE, Hauser SL (1998) Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis Genetics Group. Hum Mol Genet 7:1229–1234

    Article  PubMed  CAS  Google Scholar 

  12. Weissert R, Wallström E, Storch M, Stefferl A, Lorentzen J, Lassmann H, Linington C, Olsson T (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    Article  PubMed  CAS  Google Scholar 

  13. Chataway J, Feakes R, Coraddu F, Gray J, Deans J, Fraser M, Robertson N, Broadley S, Jones H, Clayton D, Goodfellow P, Sawcer S, Compston A (1998) The genetics of multiple sclerosis: principles, background and updated results of the United Kingdom systematic genome screen. Brain 121:1869–1887

    Article  PubMed  Google Scholar 

  14. Lorentzen JC, Andersson M, Issazadeh S, Dahlman I, Luthman H, Weissert R, Olsson T (1997) Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats. J Neuroimmunol 80:31–37

    Article  PubMed  Google Scholar 

  15. Kjellén P, Issazadeh S, Olsson T, Holmdahl R (1998) Genetic influence on disease course and cytokine response in relapsing experimental allergic encephalomyelitis. Int Immunol 10:333–340

    Article  PubMed  Google Scholar 

  16. Roth MP, Viratelle C, Dolbois L, Delverdier M, Borot N, Pelletier L, Druet P, Clanet M, Coppin H (1999) A genome-wide search identifies two susceptibility loci for experimental autoimmune encephalomyelitis on rat chromosomes 4 and 10. J Immunol 162:1917–1922

    PubMed  CAS  Google Scholar 

  17. Dahlman I, Lorentzen J, de Graaf K, Stefferl A, Linington C, Luthman H, Olsson T (1998) Quantitative trait loci disposing for both experimental arthritis and encephalomyelitis in the DA rat; impact on severity of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis and antibody isotype pattern. Eur J Immunol 28:2188–2196

    Article  PubMed  CAS  Google Scholar 

  18. Dahlman I, Wallstrom E, Weissert R, Storch M, Kornek B, Jacobsson L, Linington C, Luthman H, Lassmann H, Olsson T (1999) Linkage analysis of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in the rat identifies a locus controlling demyelination on chromosome 18. Hum Mol Genet 8:2183–2190

    Article  PubMed  CAS  Google Scholar 

  19. Dahlman I, Jacobsson L, Lorentzen JC, Glaser A, Luthman H, Olsson T (1999) A genome wide linkage analysis of chronic relapsing experimental autoimmune encephalomyelitis in the rat identifies a major susceptibility locus on chromosome 9. J Immunol 162:2581–2588

    PubMed  CAS  Google Scholar 

  20. Baker D, Butler D, Scallon BJ, O’Neill JK, Turk JL, Feldmann M (1994) Control of established experimental allergic encephalomyelitis by inhibition of tumor necrosis factor (TNF) activity within the central nervous system using monoclonal antibodies and TNF receptor-immunoglobulin fusion proteins. Eur J Immunol 24:2040–2048

    Article  PubMed  CAS  Google Scholar 

  21. Sundvall M, Jirholt J, Yang H, Jansson L, Engström A, Pettersson U, Holmdahl R (1995) Identification of murine loci associated with susceptibility to chronic experimental autoimmune encephalomyelitis. Nature Gen. 10:313–317

    Article  CAS  Google Scholar 

  22. Encinas J, Lees M, Sobel R, Symonowicz C, Greer J, Shovlin CL, Weiner H, Seidman C, Seidman J, Kuchroo V (1996) Genetic analysis of susceptibility to experimental autoimmune encephalomyelitis in a cross between SJL/J and B10.S mice. J Immunol 157:2186–2192

    PubMed  CAS  Google Scholar 

  23. Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA, Roper RJ, Teuscher C (1998) New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 161:1860–1867

    PubMed  CAS  Google Scholar 

  24. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF, Trent JM (1998) Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 95:9979–9984

    Article  PubMed  CAS  Google Scholar 

  25. Vyse TJ, Todd JA (1996) Genetic analysis of autoimmune disease. Cell 85:311–318

    Article  PubMed  CAS  Google Scholar 

  26. Encinas JA, Wicker LS, Peterson LB, Mukasa A, Teuscher C, Sobel R, Weiner HL, Seidman CE, Seidman JG, Kuchroo VK (1999) QTL influencing autoimmune dia-betes and encephalomyelitis map to a 0.15-cM region containing I12 (letter). Nat Genet 21:158–160

    Article  PubMed  CAS  Google Scholar 

  27. van Walderveen MA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin ST, Valk J (1995) Correlating MRI and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1-weighted) spin-echo images. Neurology 45:1684–1690

    Article  PubMed  Google Scholar 

  28. Sedgwick JD, Schwender S, Gregersen R, Dorries R, ter Meulen V (1993) Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med 177:1145–1152

    Article  PubMed  CAS  Google Scholar 

  29. Chung IY, Norris JG, Benveniste EN (1991) Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med 173:801–811

    Article  PubMed  CAS  Google Scholar 

  30. Linke A, Male D (1994) Strain-specific variation in constitutive and inducible expression of MHC class II, class I and ICAM-1 on rat cerebral endothelium. Immunology 82:88–94

    PubMed  CAS  Google Scholar 

  31. Linke T, Greenwood J, Campbell I, Luthert P, Male DK (1998) Strain specific variation in IFN-gamma inducible lymphocyte adhesion to rat brain endothelial cells. J Neuroimmunol 91:28–32

    Article  PubMed  CAS  Google Scholar 

  32. Linke AT, Antonopoulos M, Davies DH, Male DK (2000) Strain specific variation in cytokine regulated ICAM-1 expression by rat brain-endothelial cells. J Neuroimmunol 104:10–14

    Article  PubMed  CAS  Google Scholar 

  33. Popovich PG, Wei P, Stokes BT (1997) Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 377:443–464

    Article  PubMed  CAS  Google Scholar 

  34. Kreutzberg GW, Graeber MB, Streit WJ (1989) Neuron-glial relationship during regeneration of motorneurons. Metab Brain Dis 4:81–85

    Article  PubMed  CAS  Google Scholar 

  35. Aldskogius H, Svensson M (1993) Neuronal and glial responses to axon injury. In: Malhotra SK (ed) Advances in structural biology. JAI Press, Greenwich, Connecticut, pp 191–223.

    Google Scholar 

  36. Maehlen J, Schroder H, Klareskog L, Olsson T, Kristensson K (1988) Axotomy induces MHC class I antigen expression on rat nerve cells. Neurosci Lett 92:8–13

    Article  PubMed  CAS  Google Scholar 

  37. Olsson T, Kristensson K, Ljungdahl A, Maehlen J, Holmdahl R, Klareskog L (1989) Gamma-interferon-like immunoreactivity in axotomized rat motor neurons. J Neurosci 9:3870–3875

    PubMed  CAS  Google Scholar 

  38. Streit WJ, Graeber MB, Kreutzberg GW (1989) Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 105:115–126

    Article  PubMed  CAS  Google Scholar 

  39. Koliatsos VE, Price WL, Pardo CA, Price DL (1994) Ventral root avulsion: an experimental model of death of adult motor neurons. J Comp Neurol 342:35–44

    Article  PubMed  CAS  Google Scholar 

  40. Piehl F, Tabar G, Cullheim S (1995) Expression of NMDA receptor mRNAs in rat motoneurons is down-regulated after axotomy. Eur J Neurosci 7:2101–2110

    Article  PubMed  CAS  Google Scholar 

  41. Piehl F, Lundberg C, Khademi M, Dahlman I, Lorentzen J, Olsson T (1999) NonMHC gene regulation of nerve root injury-induced spinal cord inflammation and neuron death. J Neuroimmunol 101:87–97

    Article  PubMed  CAS  Google Scholar 

  42. Lorentzen JC, Issazadeh S, Storch M, Mustafa MI, Lassman H, Linington C, Klareskog L, Olsson T (1995) Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. J Neuroimmunol 63:193–205

    Article  PubMed  CAS  Google Scholar 

  43. Lundberg C, Lidman O, Holmdahl R, Olsson T, Piehl F (2001) Neurodegeneration and glial activation patterns after mechanical nerve injury are differentially regulated by non-MHC genes in congenic inbred rat strains. J Comp Neurol 431:75–87

    Article  PubMed  CAS  Google Scholar 

  44. Serikawa T, Kuramoto T, Hilbert P et al (1992) Rat gene mapping using PCR-analyzed microsatellites. Genetics 131:701–721

    PubMed  CAS  Google Scholar 

  45. Olsson T, Dahlman I, Wallstrom E, Weissert R, Piehl F (2000) Genetics of rat neuroinflammation. J Neuroimmunol 107:191–200

    Article  PubMed  CAS  Google Scholar 

  46. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM (1999) Expression profiling using cDNA microarrays. Nat Genet 21:10–14

    Article  PubMed  CAS  Google Scholar 

  47. Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss [published erratum appears in Brain 1996 119:1415]. Brain 118:1583–1592

    Article  PubMed  Google Scholar 

  48. De Stefano N, Matthews PM, Fu L, Narayanan S, Stanley J, Francis GS, Antel JP, Arnold DL (1998) Axonal damage correlates with disability in patients with relapsing-remitting multiple sclerosis. Results of a longitudinal magnetic resonance spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  49. Lee MA, Blamire AM, Pendlebury S, Ho KH, Mills KR, Styles P, Palace J, Matthews PM (2000) Axonal injury or loss in the internal capsule and motor impairment in multiple sclerosis. Arch Neurol 57:65–70

    Article  PubMed  CAS  Google Scholar 

  50. Reddy H, Narayanan S, Matthews PM, Hoge RD, Pike GB, Duquette P, Antel J, Arnold DL (2000) Relating axonal injury to functional recovery in MS. Neurology 54:236–239

    Article  PubMed  CAS  Google Scholar 

  51. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  52. Trapp B, Peterson J, Ransohoff R, Rudick R, Mørk S, Bø L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  53. Smith T, Groom A, Zhu B, Turski L (2000) Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 6:62–66

    Article  PubMed  CAS  Google Scholar 

  54. Ben-Nun A, Wekerle H, Cohen IR (1981) The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol 11:195–199

    Article  PubMed  CAS  Google Scholar 

  55. Pettinelli CB, McFarlin DE (1981) Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2-T lymphocytes. J Immunol 127:1420–1423

    PubMed  CAS  Google Scholar 

  56. Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86:981–985

    Article  PubMed  CAS  Google Scholar 

  57. Zhang J, Medaer R, Stinissen P, Hafler D, Raus J (1993) MHC-restricted depletion of human myelin basic protein-reactive T cells by T cell vaccination. Science 261:1451–1454

    Article  PubMed  CAS  Google Scholar 

  58. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS (1997) Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med 3:1133–1136

    Article  PubMed  CAS  Google Scholar 

  59. Wang W, Olsson T, Kostulas V, Höjeberg B, Ekre H, Link H (1992) Myelin antigen reactive T cells in cerebrovascular diseases. Clin Exp Immunol 88:157–162

    Article  PubMed  CAS  Google Scholar 

  60. Olsson T, Diener P, Ljungdahl Å, Höjeberg B, van der Meide P, Kristensson K (1992) Facial nerve transection causes expansion of myelin autoreactive T cells in regional lymph nodes and T cell homing to the facial nucleus. Autoimmunity 13:117–126

    Article  PubMed  CAS  Google Scholar 

  61. Olsson T, Sun JB, Solders G, Xiao BG, Höjeberg B, Ekre HP, Link H (1993) Autoreactive T and B cell responses to myelin antigens after diagnostic sural nerve biopsy. J Neurol Sci 117:130–139

    Article  PubMed  CAS  Google Scholar 

  62. Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-o-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 22:2429–2436

    Article  PubMed  CAS  Google Scholar 

  63. Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993) Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36:681–693

    Article  PubMed  CAS  Google Scholar 

  64. Chao C, Hu S, Molitor T, Shaskan E, Peterson P (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    PubMed  CAS  Google Scholar 

  65. Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and ofNmethyl-D-aspartatereceptors. Brain Behav Immun 9:355–365

    Article  PubMed  CAS  Google Scholar 

  66. Lee SC, Dickson DW, Liu W, Brosnan CF (1993) Induction of nitric oxide synthase activity in human astrocytes by interleukin-1 beta and interferon-gamma. J Neuroimmunol 46:19–24

    Article  PubMed  CAS  Google Scholar 

  67. Merrill JE, Ignarro LJ, Sherman MP, Melinek J, Lane TE (1993) Microglial cell cytotoxicity of oligodendrocytes is mediated through nitric oxide. J Immunol 151:2132–2141

    PubMed  CAS  Google Scholar 

  68. Talley AK, Dewhurst S, Perry SW, Dollard SC, Gummuluru S, Fine SM, New D, Epstein LG, Gendelman HE, Gelbard HA (1995) Tumor necrosis factor alpha-induced apoptosis in human neuronal cells: protection by the antioxidant N-acetyl-cysteine and the genes bcl-2 and crmA.Mol Cell Biol 15:2359–2366

    PubMed  CAS  Google Scholar 

  69. Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neurons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20:5283–5291

    PubMed  CAS  Google Scholar 

  70. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed  CAS  Google Scholar 

  71. Kishino A, Ishige Y, Tatsuno T, Nakayama C, Noguchi H (1997) BDNF prevents and reverses adult rat motor neuron degeneration and induces axonal outgrowth. Exp Neurol 144:273–286

    Article  PubMed  CAS  Google Scholar 

  72. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17:9583–9595

    PubMed  CAS  Google Scholar 

  73. Hammond EN, Tetzlaff W, Mestres P, Giehl KM (1999) BDNF, but not NT-3, promotes long-term survival of axotomized adult rat corticospinal neurons in vivo. Neuroreport 10:2671–2675

    Article  PubMed  CAS  Google Scholar 

  74. Besser M, Wank R (1999) Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Thl/Th2-polarized expression of their receptors. J Immunol 162:6303–6306

    PubMed  CAS  Google Scholar 

  75. Novikov L, Novikova L, Kellerth JO (1995) Brain-derived neurotrophic factor promotes survival and blocks nitric oxide synthase expression in adult rat spinal motoneurons after ventral root avulsion. Neurosci Lett 200:45–48

    Article  PubMed  CAS  Google Scholar 

  76. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen I, Schwartz M (1999) Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 5:49–55

    Article  PubMed  CAS  Google Scholar 

  77. Serpe C, Kohm A, Huppenbauer C, Sanders V, Jones K (1999) Exacerbation of facial motoneuron loss after facial nerve transection in severe combined immunodeficient (scid) mice. J Neurosci 19:RC7

    Google Scholar 

  78. Villoslada P, Hauser SL, Bartke I, Unger J, Heald N, Rosenberg D, Cheung SW, Mobley WC, Fisher S, Genain CP (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191:1799–1806

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia

About this chapter

Cite this chapter

Piehl, F., Lidman, O., Olsson, T. (2004). Genetic Regulation of Nerve Cell Death/Glial Activation and Protective Effects of Myelin Basic Protein Autoimmune Neurotrophin Production in Mechanically Induced Neurodegeneration. In: Hommes, O.R., Comi, G. (eds) Early Indicators Early Treatments Neuroprotection in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2117-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2117-4_3

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2171-6

  • Online ISBN: 978-88-470-2117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics