Skip to main content

Part of the book series: Topics in Neuroscience ((TOPNEURO))

Abstract

Multiple sclerosis (MS) is a clinically heterogeneous disease [1]. On the one side of the spectrum is relapsing-remitting (RR) disease, characterized by attacks of neurological dysfunction due to focal central nervous system (CNS) inflammation, followed by recovery and a period of remission, and on the other side is primary progressive (PP) disease, which is progressive from the outset with no clinical relapses. Between these two extremes are patients who, after presenting with RR disease, subsequently go onto develop a secondary progressive (SP) course. SP disease can be further subdivided into relapsing and non-relapsing disease, depending on whether or not patients continue to have clinical relapses. Approximately 15%-30% of patients with RR disease do not enter the progressive phase of the disease and are classified retrospectively as having benign disease. Why such clinical heterogeneity occurs is currently unknown. Are RR and PPMS different diseases or are they part of the same clinical spectrum? Why do some patients develop progressive disease whilst others do not? Answers to these questions will not only improve our understanding of MS, but will also have major implications for the treatment of MS. Recent data support a complex role for inflammation in disease pathogenesis, with good and bad effects. This article will review the supporting data and propose a hypothesis to explain this paradox or yin and yang of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lublin FD et al (1996) Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 46:907–911

    Article  PubMed  CAS  Google Scholar 

  2. Cserr HF et al (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  3. Raine CS (1995) Multiple sclerosis: TNF revisited, with promise. Nat Med 1:211–214

    Article  PubMed  CAS  Google Scholar 

  4. Maini R et al (1999) Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 354:1932–1939

    Article  PubMed  CAS  Google Scholar 

  5. Moreland LW et al (1997) Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med 337:141–147

    Article  PubMed  CAS  Google Scholar 

  6. Hodgson H (1999) Prospects of new therapeutic approaches for Crohn’s disease. Lancet 353:425–426

    Article  PubMed  CAS  Google Scholar 

  7. Rutgeerts et al (1999) Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 117:761–769

    Article  PubMed  CAS  Google Scholar 

  8. van Oosten BW (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47:1531–1534

    Article  PubMed  Google Scholar 

  9. The Lenercept Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group (1999) TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53:457–465

    Article  Google Scholar 

  10. Liu J et al (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4:78–83

    Article  PubMed  CAS  Google Scholar 

  11. Dal Canto RA et al (1999) Local delivery of TNF by retrovirus-transduced T lymphocytes exacerbates experimental autoimmune encephalomyelitis. Clin Immunol 90:10–14

    Article  Google Scholar 

  12. Giovannoni G et al (1998) The potential role of nitric oxide in multiple sclerosis. Mult Scler 4:212–216

    PubMed  CAS  Google Scholar 

  13. Bagasara O et al (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 92:12041–12045

    Article  Google Scholar 

  14. Bö L et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778–786

    Article  PubMed  Google Scholar 

  15. Cross AH et al (1998) Peroxynitrite formation within the central nervous system in active multiple sclerosis. J Neuroimmunol 88:45–56

    Article  PubMed  CAS  Google Scholar 

  16. Vladimirova O et al (1998) Oxidative damage to DNA in plaques of MS brains. Mult Scler 4:413–418

    PubMed  CAS  Google Scholar 

  17. Johnson AW et al (1995) Evidence for increased nitric oxide production in multiple sclerosis. J Neurol Neurosurg Psychiatry 58:107

    Article  PubMed  CAS  Google Scholar 

  18. Giovannoni G et al (1997) Raised serum nitrate and nitrite levels in patients with multiple sclerosis. J Neurol Sci 145:77–81

    Article  PubMed  CAS  Google Scholar 

  19. Giovannoni G et al (1997) Raised serum nitrate and nitrite concentrations in patients with multiple sclerosis correlate with lower clinical and MRI levels of disease activity. J Neuroimmunol 80:182

    Google Scholar 

  20. Giovannoni G et al (1999) Increased urinary nitric oxide metabolites in patients with multiple sclerosis correlates with early and relapsing disease. Mult Scler 5:335–341

    PubMed  CAS  Google Scholar 

  21. Cross AH et al (1994) Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93:2684–2690

    Article  PubMed  CAS  Google Scholar 

  22. Zielasek J et al (1995) Administration of nitric oxide synthase inhibitors in experimental autoimmune neuritis and experimental autoimmune encephalomyelitis. J Neuroimmunol 58:81–88

    Article  PubMed  CAS  Google Scholar 

  23. Ruuls SR et al (1996) Aggravation of experimental allergic encephalomyelitis (EAE) by administration of nitric oxide (NO) synthase inhibitors. Clin Exp Immunol 103:467–474

    Article  PubMed  CAS  Google Scholar 

  24. Fenyk-Melody JE et al (1998) Experimental autoimmune encephalomyelitis is exacerbated in mice lacking the NOS2 gene. J Immunol 160:2940–2946

    PubMed  CAS  Google Scholar 

  25. Sahrbacher UC et al (1998) Mice with an inactivation of the inducible nitric oxide synthase gene are susceptible to experimental autoimmune encephalomyelitis. Eur J Immunol 28:1332–1338

    Article  PubMed  CAS  Google Scholar 

  26. Ding M et al (1998) Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice. J Immunol 160:2560–2564

    PubMed  CAS  Google Scholar 

  27. Kolb H et al (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 19:556–561

    Article  PubMed  CAS  Google Scholar 

  28. Chang RH et al (1997) Nitric oxide increased interleukin-4 expression in T lymphocytes. Immunology 90:364–369

    Article  PubMed  CAS  Google Scholar 

  29. Mattner F et al (1993) The interleukin-12 subunit P40 specifically inhibits effects of the interleukin-12 heterodimer. Eur J Immunol 23:2203–2208

    Article  Google Scholar 

  30. Sicher SC et al (1994) Inhibition of macrophage Ia expression by nitric oxide. J Immunol 153:1293–1300

    PubMed  CAS  Google Scholar 

  31. Habib A et al (1997) Regulation of the expression of cyclooxygenase-2 by nitric oxide in rat peritoneal macrophages. J Immunol 158:3845–3851

    PubMed  CAS  Google Scholar 

  32. Kubes P et al (1991) Nitric oxide — an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 88:4651–4655

    Article  PubMed  CAS  Google Scholar 

  33. Adams MR et al (1997) L-arginine reduces human monocyte adhesion to vascular endothelium and endothelial expression of cell adhesion molecules. Circulation 95:662–668

    Article  PubMed  CAS  Google Scholar 

  34. Okuda Y et al (1997) Nitric oxide via an inducible isoform of nitric oxide synthase is a possible factor to eliminate inflammatory cells from the central nervous system of mice with experimental allergic encephalomyelitis. J Neuroimunol 73:107–116

    Article  CAS  Google Scholar 

  35. Nathan C (1995) Inducible nitric oxide synthase: regulation subserves function. Curr Top Microbiol Immunol 196:1–4

    Article  PubMed  CAS  Google Scholar 

  36. Wajant H et al (1999) TNF receptor associated factors in cytokine signaling. Cytokine Growth Factor Rev 10:15–26

    Article  PubMed  CAS  Google Scholar 

  37. Stefanelli C et al (1999) Nitric oxide can function as either a killer molecule or an antiapoptotic effector in cardiomyocytes. Biochim Biophys Acta 1450:406–413

    Article  PubMed  CAS  Google Scholar 

  38. Kerschensteiner M et al (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    Article  PubMed  CAS  Google Scholar 

  39. Ye P et al (1999) Insulin-like growth factor I protects oligodendrocytes from tumor necrosis factor-alpha-induced injury. Endocrinology 140:3063–3072

    Article  PubMed  CAS  Google Scholar 

  40. Wilczak N et al (1997) Insulin-like growth factor-I receptors in normal appearing white matter and chronic plaques in multiple sclerosis. Brain Res 772:243–246

    Article  PubMed  CAS  Google Scholar 

  41. Gveric D et al (1999) Insulin-like growth factors and binding proteins in multiple sclerosis plaques. Neuropathol Appl Neurobiol 25:215–225

    Article  PubMed  CAS  Google Scholar 

  42. Cannella B (1999) Neuregulin and erbB receptor expression in normal and diseased human white matter. J Neuroimmunol 100:233–242

    Article  PubMed  CAS  Google Scholar 

  43. Cohen IR et al (1999) Autoimmune maintenance and neuroprotection of the central nervous system. J Neuroimmunol 100:111–114

    Article  PubMed  CAS  Google Scholar 

  44. Lucchinetti CF et al (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274

    Article  PubMed  CAS  Google Scholar 

  45. Mann CL et al (2000) Glutathione S-transferase polymorphisms in MS: their relationship to disability. Neurology 54:552–557

    Article  PubMed  CAS  Google Scholar 

  46. Losseff NA et al (1996) Progressive cerebral atrophy in multiple sclerosis. A serial MRI study. Brain 119:2009–2019

    Article  PubMed  Google Scholar 

  47. Coles AJ et al (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46:296–304

    Article  PubMed  CAS  Google Scholar 

  48. Eberhardt K et al (1998) Clinical course and remission rate in patients with early rheumatoid arthritis: relationship to outcome after 5 years. Br J Rheumatol 37:1324–1329

    Article  PubMed  CAS  Google Scholar 

  49. Levin M et al (1999) Understanding the genetic basis of susceptibility to mycobacterial infection. Proc Assoc Am Physicians 111:308–312

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Italia

About this chapter

Cite this chapter

Giovannoni, G. (2004). The Yin and Yang of Inflammation in Multiple Sclerosis. In: Hommes, O.R., Comi, G. (eds) Early Indicators Early Treatments Neuroprotection in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-2117-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2117-4_19

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2171-6

  • Online ISBN: 978-88-470-2117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics