Skip to main content

Mathematics of Hybrid Imaging: A Brief Review

  • Conference paper
The Mathematical Legacy of Leon Ehrenpreis

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 16))

Abstract

The article provides a brief survey of the mathematics of newly being developed so-called “hybrid” (also called “multi-physics” or “multi-wave”) imaging techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Besides the name AET, suggested in the original paper [148], other names are also used: Ultrasound Modulated EIT (UMEIT) [17], Impediography [10], and some others.

  2. 2.

    The reader should be aware that this classification of hybrid modalities into three classes, although being reasonable, is not commonly accepted and is used in this text only for the author’s convenience.

  3. 3.

    Some microlocal arguments in [6], although correct, were incomplete. The missing arguments are provided in [123].

  4. 4.

    Here instability = ill-posedness = super-algebraic decay of singular values of the direct mapping.

References

  1. Agranovsky, M., Finch, D., Kuchment, P.: Range conditions for a spherical mean transform. Inverse Probl. Imaging 3, 373–382 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089–2102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the TAT and PAT tomography. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 89–101. CRC Press, Boca Raton (2009)

    Chapter  Google Scholar 

  4. Agranovsky, M., Kuchment, P., Quinto, E.T.: Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248, 344–386 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agranovsky, M., Nguyen, L.: Range conditions for a spherical mean transform and global extension of solutions of Darboux equation. J. Anal. Math. 112(1), 351–367 (2011). doi:10.1007/s11854-010-0033-0

    Article  MathSciNet  Google Scholar 

  6. Agranovsky, M., Quinto, E.T.: Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139, 383–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aguilar, V., Ehrenpreis, L., Kuchment, P.: Range conditions for the exponential Radon transform. J. Anal. Math. 68, 1–13 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allmaras, M., Bangerth, W.: Reconstructions in ultrasound modulated optical tomography. Preprint arXiv:0910.2748v3

  9. Ambartsoumian, G., Kuchment, P.: A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38, 681–692 (2006)

    Article  MathSciNet  Google Scholar 

  10. Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M.: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68, 1557–1573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Mathematical modeling in photoacoustic imaging of small absorbers. SIAM Rev. 52, 677–695 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Anastasio, M., Zhang, J., Pan, X., Zou, Y., Ku, G., Wang, L.V.: Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199–210 (2005)

    Article  Google Scholar 

  14. Andreev, V., Popov, D., et al.: Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. Proc. SPIE 4618, 137–145 (2002)

    Article  Google Scholar 

  15. Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006)

    Article  MATH  Google Scholar 

  16. Bal, G.: Hybrid inverse problems and internal information. In: G. Uhlmann, (ed.), Inside out: Inverse Problems and Applications. MSRI Publ., vol. 2 (to appear)

    Google Scholar 

  17. Bal, G.: Cauchy problem for Ultrasound Modulated EIT, preprint, April 2011

    Google Scholar 

  18. Bal, G., Bonnetier, E., Monard, F., Triki, F.: Inverse diffusion from knowledge of power densities, preprint, March 2011

    Google Scholar 

  19. Bal, G., Finch, D., Kuchment, P., Stefanov, P., Uhlmann, G. (eds.): Tomography and Inverse Transport Theory. Contemp. Math., vol. 559. AMS, Providence (2011)

    MATH  Google Scholar 

  20. Bal, G., Jollivet, A.: Combined source and attenuation reconstructions in SPECT. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 13–28. AMS, Providence (2011)

    Chapter  Google Scholar 

  21. Bal, G., Jollivet, A., Jugnon, V.: Inverse transport theory of photoacoustics. Inverse Probl. 26(2), 025011 (2010)

    Article  MathSciNet  Google Scholar 

  22. Bal, G., Ren, K.: Multiple-source quantitative photoacoustic tomography (submitted)

    Google Scholar 

  23. Bal, G., Ren, K.: Non-uniqueness result for a hybrid inverse problem. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 29–38. AMS, Providence (2011)

    Chapter  Google Scholar 

  24. Bal, G., Ren, K., Uhlmann, G., Zhou, T.: Quantitative thermo-acoustics and related problems. Inverse Probl. 27, 055007. doi:10.1088/0266-5611/27/5/055007

  25. Bal, G., Schotland, J.C.: Inverse scattering and acousto-optic imaging. Phys. Rev. Lett. 104, 043902 (2010)

    Article  Google Scholar 

  26. Bal, G., Uhlmann, G.: Inverse diffusion theory of photoacoustics. Inverse Probl. 26(8), 085010 (2010)

    Article  MathSciNet  Google Scholar 

  27. Barber, D.C., Brown, B.H.: Applied potential tomography. J. Phys. E., Sci. Instrum. 17, 723–733 (1984)

    Article  Google Scholar 

  28. Bell, A.G.: On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880)

    Google Scholar 

  29. Beylkin, G.: The inversion problem and applications of the generalized Radon transform. Commun. Pure Appl. Math. 37, 579–599 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bonnetier, E., Triki, F.: A stability result for electric impedance tomography by elastic perturbation. Presentation at the workshop “Inverse Problems: Theory and Applications”, 12 November 2010. MSRI, Berkeley, CA

    Google Scholar 

  31. Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bowen, T.: Radiation-induced thermoacoustic soft tissue imaging. Proc., IEEE Ultrason. Symp. 2, 817–822 (1981)

    Google Scholar 

  33. Budinger, T.F., Gullberg, G.T., Huseman, R.H.: Emission computed tomography. In: Herman, G. (ed.) Image Reconstruction from Projections. Topics in Applied Physics, vol. 32, pp. 147–246. Springer, Berlin (1979)

    Chapter  Google Scholar 

  34. Bukhgeim, A.L.: Inverse gravimetry approach to attenuated tomography. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 49–64. AMS, Providence (2011)

    Chapter  Google Scholar 

  35. Burq, N.: Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180(1), 1–29 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Calderón, A.: Selected Papers of Alberto P. Calderón. With commentary. Edited by A. Bellow, C.E. Kenig, P. Malliavin, American Mathematical Society, Providence (2008)

    Google Scholar 

  38. Capdeboscq, Y., Fehrenbach, J., de Gournay, F., Kavian, O.: Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements. SIAM J. Imaging Sci. 2/4, 1003–1030 (2009)

    Article  Google Scholar 

  39. Capdeboscq, Y., Vogelius, M.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37(1), 159–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cheney, M.: A mathematical tutorial on synthetic aperture radar. SIAM Rev. 43(2), 301–312 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Cipra, B.: Shocking images from RPI. SIAM News, July 1994, 14–15

    Google Scholar 

  43. Colton, D.: Inverse acoustic and electromagnetic scattering theory. In: Uhlmann, G. (ed.) Inside out: Inverse Problems and Applications. MSRI Publ., pp. 67–110. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  44. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  45. Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Interscience, New York (1962)

    MATH  Google Scholar 

  47. Cox, B.T., Arridge, S.R., Beard, P.C.: Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A 26, 443–455 (2009)

    Article  Google Scholar 

  48. Cox, B., Tarvainen, T., Arridge, S.: Multiple illumination quantitative photoacoustic tomography using transport and diffusion models. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 1–12. AMS, Providence (2011)

    Chapter  Google Scholar 

  49. Cox, B.T., Laufer, J.G., Beard, P.C.: The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009)

    Article  Google Scholar 

  50. Diebold, G.J., Sun, T., Khan, M.I.: Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67(24), 3384–3387 (1991)

    Article  Google Scholar 

  51. Egorov, Y.V., Shubin, M.A.: Partial Differential Equations I. Encyclopaedia of Mathematical Sciences, vol. 30, pp. 1–259. Springer, Berlin (1992)

    MATH  Google Scholar 

  52. Ehrenpreis, L.: The Universality of the Radon Transform. Oxford Univ. Press, London (2003)

    Book  MATH  Google Scholar 

  53. Ehrenpreis, L., Kuchment, P., Panchenko, A.: Attenuated Radon transform and F. John’s equation. I. Range conditions. In: Grinberg, E.L., Berhanu, S., Knopp, M., Mendoza, G., Quinto, E.T. (eds.) Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis. AMS, Providence (2000)

    Google Scholar 

  54. Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. Finch, D., Patch, S., Rakesh: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5), 1213–1240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Finch, D., Rakesh: The spherical mean value operator with centers on a sphere. Inverse Probl. 23, S37–S50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Finch, D., Rakesh: Range of the spherical mean value operator for functions supported in a ball. Inverse Probl. 22, 923–938 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  58. Finch, D., Rakesh: Recovering a function from its spherical mean values in two and three dimensions. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 77–88. CRC Press, Boca Raton (2009)

    Chapter  Google Scholar 

  59. Gebauer, B., Scherzer, O.: Impedance-acoustic tomography. SIAM J. Appl. Math. 69, 565–576 (2009)

    Article  MathSciNet  Google Scholar 

  60. Gelfand, I., Gindikin, S., Graev, M.: Selected Topics in Integral Geometry. Transl. Math. Monogr., vol. 220. Am. Math. Soc., Providence (2003)

    MATH  Google Scholar 

  61. Gelfand, I., Graev, M., Vilenkin, N.: Generalized Functions. Integral Geometry and Representation Theory, vol. 5. Academic. Press, San Diego (1965)

    Google Scholar 

  62. Grün, H., Haltmeier, M., Paltauf, G., Burgholzer, P.: Photoacoustic tomography using a fiber based Fabry–Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. Proc. SPIE 6631, 663107 (2007)

    Article  Google Scholar 

  63. Helgason, S.: The Radon Transform. Birkhäuser, Basel (1980)

    Book  MATH  Google Scholar 

  64. Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2010)

    Google Scholar 

  65. Herman, G. (ed.): Image Reconstruction from Projections. Topics in Applied Physics, vol. 32. Springer, Berlin (1979)

    Google Scholar 

  66. Hernandez-Figueroa, H.E., Zamboni-Rached, M., Recami, E. (eds.): Localized Waves. IEEE Press/Wiley, Hoboken (2008)

    Google Scholar 

  67. Hickmann, K.: Unique determination of acoustic properties from thermoacoustic data. Ph.D. Thesis, Oregon State University, Corvallis, OR (2010)

    Google Scholar 

  68. Hristova, Y.: Time reversal in thermoacoustic tomography: error estimate. Inverse Probl. 25, 1–14 (2009)

    Article  MathSciNet  Google Scholar 

  69. Hristova, Y., Kuchment, P., Nguyen, L.: On reconstruction and time reversal in thermoacoustic tomography in homogeneous and non-homogeneous acoustic media. Inverse Probl. 24, 055006 (2008)

    Article  MathSciNet  Google Scholar 

  70. Jin, X., Wang, L.V.: Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 51, 6437–6448 (2006)

    Article  Google Scholar 

  71. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Dover, New York (1971)

    Google Scholar 

  72. Kempe, M., Larionov, M., Zaslavsky, D., Genack, A.Z.: Acousto-optic tomography with multiply scattered light. J. Opt. Soc. Am. A 14, 1151–1158 (1997)

    Article  Google Scholar 

  73. Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165(2), 567–591 (2007)

    Article  MATH  Google Scholar 

  74. Kirsch, A.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3, 155–172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. Kruger, R.A., Liu, P., Fang, Y.R., Appledorn, C.R.: Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)

    Article  Google Scholar 

  76. Kuchment, P.: Generalized transforms of Radon type and their applications. In: Olafsson, G., Quinto, E.T. (eds.) The Radon Transform, Inverse Problems, and Tomography. American Mathematical Society Short Course, January 3–4, 2005, Atlanta, Georgia. Proc. Symp. Appl. Math., vol. 63, pp. 67–91. AMS, Providence (2006)

    Google Scholar 

  77. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  78. Kuchment, P., Kunyansky, L.: Synthetic focusing in ultrasound modulated tomography. Inverse Probl. Imaging 4(4), 665–673 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. Kuchment, P., Kunyansky, L.: 2D and 3D reconstructions in acousto-electric tomography. Inverse Probl. 27, 055013 (2011)

    Article  MathSciNet  Google Scholar 

  80. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic and photoacoustic tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 817–866. Springer, Berlin (2010)

    Google Scholar 

  81. Kuchment, P., Steinhauer, D.: Stabilizing Inverse Problems by Internal Data, preprint arXiv:1110.1819

  82. Kuchment, P., Lancaster, K., Mogilevskaya, L.: On local tomography. Inverse Probl. 11, 571–589 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  83. Kuchment, P., Quinto, E.T.: Some problems of integral geometry arising in tomography. In: Ehrenpreis, L. (ed.) The Universality of the Radon Transform. Oxford Univ. Press, London (2003). Chap. XI

    Google Scholar 

  84. Kuchment, P., Scherzer, O.: Mathematical Methods in Photoacoustic Imaging to appear in Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2012)

    Google Scholar 

  85. Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23, 373–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. Kunyansky, L.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl. 23, S11–S20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  87. Kunyansky, L.: Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm. Inverse Probl. 24(5), 055021 (2008)

    Article  MathSciNet  Google Scholar 

  88. Kunyansky, L.: Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra. Inverse Probl. 27, 025012 (2011). doi:10.1088/0266-5611/27/2/025012

    Article  MathSciNet  Google Scholar 

  89. Lavandier, B., Jossinet, J., Cathignol, D.: Quantitative assessment of ultrasound-induced resistance change in saline solution. Med. Biol. Eng. Comput. 38, 150–155 (2000)

    Article  Google Scholar 

  90. Lavandier, B., Jossinet, J., Cathignol, D.: Experimental measurement of the acousto-electric interaction signal in saline solution. Ultrasonics 38, 929–936 (2000)

    Article  Google Scholar 

  91. Leutz, W., Maret, G.: Ultrasonic modulation of multiply scattered light. Physica B 204, 14–19 (1995)

    Article  Google Scholar 

  92. Lin, V., Pinkus, A.: Fundamentality of ridge functions. J. Approx. Theory 75, 295–311 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  93. Lin, V., Pinkus, A.: Approximation of multivariate functions. In: Dikshit, H.P., Micchelli, C.A. (eds.) Advances in Computational Mathematics, pp. 1–9. World Scientific, Singapore (1994)

    Google Scholar 

  94. Louis, A.K., Quinto, E.T.: Local tomographic methods in Sonar. In: Surveys on Solution Methods for Inverse Problems, pp. 147–154. Springer, Vienna (2000)

    Chapter  Google Scholar 

  95. Mathematics and Physics of Emerging Biomedical Imaging. The National Academies Press (1996). Available online at http://www.nap.edu/catalog.php?record_id=5066#toc

  96. McLaughlin, J.R., Yoon, J.-R.: Unique identifiability of elastic parameters from time-dependent interior displacement measurement. Inverse Probl. 20, 25–45 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  97. Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232), 1854–1857 (1995). doi:10.1126/science.7569924

    Article  Google Scholar 

  98. Nachman, A.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143(1), 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  99. Nachman, A., Tamasan, A., Timonov, A.: Conductivity imaging with a single measurement of boundary and interior data. Inverse Probl. 23(6), 2551–2563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  100. Nachman, A., Tamasan, A., Timonov, A.: Recovering the conductivity from a single measurement of interior data. Inverse Probl. 25(3), 035014 (2009)

    Article  MathSciNet  Google Scholar 

  101. Nachman, A., Tamasan, A., Timonov, A.: Current density impedance imaging. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 135–150. AMS, Providence (2011)

    Chapter  Google Scholar 

  102. Nam, H.: Ultrasound modulated optical tomography. Ph.D. thesis, Texas A&M University (2002)

    Google Scholar 

  103. Nam, H., Dobson, D.: Ultrasound modulated optical tomography, preprint (2004)

    Google Scholar 

  104. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986). Reprinted in 2001 by the SIAM

    MATH  Google Scholar 

  105. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation, vol. 5. Philadelphia, SIAM (2001)

    Book  MATH  Google Scholar 

  106. Nguyen, L.V.: A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3(4), 649–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  107. Nguyen, L.V.: On singularities and instability of reconstruction in thermoacoustic tomography, preprint arXiv:0911.5521v1

  108. Oraevsky, A.A., Esenaliev, R.O., Jacques, S.L., Tittel, F.K.: Laser optoacoustic tomography for medical diagnostics principles. Proc. SPIE 2676, 22 (1996)

    Article  Google Scholar 

  109. Oraevsky, A.A., Jacques, S.L., Esenaliev, R.O., Tittel, F.K.: Laser-based optoacoustic imaging in biological tissues. Proc. SPIE 2134A, 122–128 (1994)

    Google Scholar 

  110. Päivärinta, L., Sylvester, J.: Transmission Eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  111. Palamodov, V.P.: Reconstructive Integral Geometry. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  112. Palamodov, V.: Remarks on the general Funk-Radon transform and thermoacoustic tomography. Inverse Probl. Imaging 4(4), 693–702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  113. Paltauf, G., Viator, J.A., Prahl, S.A., Jacques, S.L.: Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 112(4), 1536–1544 (2002)

    Article  Google Scholar 

  114. Patch, S.K., Scherzer, O.: Photo- and thermo-acoustic imaging. Inverse Probl. 23, S01–S10 (2007)

    Article  MathSciNet  Google Scholar 

  115. Popov, D.A., Sushko, D.V.: A parametrix for the problem of optical-acoustic tomography. Dokl. Math. 65(1), 19–21 (2002)

    MATH  Google Scholar 

  116. Popov, D.A., Sushko, D.V.: Image restoration in optical-acoustic tomography. Probl. Inf. Transm. 40(3), 254–278 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  117. Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.-K.: An efficient Neumann-series based algorithm for thermoacoustic tomography with variable sound speed. SIAM J. Imaging Sci. 4, 850–883 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  118. Quinto, E.T.: Singularities of the X-ray transform and limited data tomography in ℝ2 and ℝ3. SIAM J. Math. Anal. 24, 1215–1225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  119. Ralston, J.V.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  120. Ren, K., Bal, G.: On multi-spectral quantitative photoacoustic tomography. Inverse Probl. 28, 025010 (2012)

    Article  MathSciNet  Google Scholar 

  121. Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, Berlin (2010)

    Google Scholar 

  122. Seo, J.K., Woo, E.Je.: Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev. 53(1), 40–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  123. Stefanov, P., Uhlmann, G.: Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130(1), 239–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  124. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Probl. 25(7), 075011 (2009)

    Article  MathSciNet  Google Scholar 

  125. Stefanov, P., Uhlmann, G.: Thermoacoustic tomography arising in brain imaging. Inverse Probl. 27, 045004 (2011)

    Article  MathSciNet  Google Scholar 

  126. Steinhauer, D.: A uniqueness theorem for thermoacoustic tomography in the case of limited boundary data, preprint arXiv:0902.2838

  127. Steinhauer, D.: A reconstruction procedure for thermoacoustic tomography in the case of limited boundary data, preprint arXiv:0905.2954

  128. Sylvester, J.: Discreteness of transmission eigenvalues via upper triangular compact operators, preprint arXiv:1104.4336

  129. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  130. Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381–431 (1986)

    Article  Google Scholar 

  131. Tuchin, V.V. (ed.): Handbook of Optical Biomedical Diagnostics. SPIE, Bellingham (2002)

    Google Scholar 

  132. Uhlmann, G.: Inverse boundary value problems and applications. Astérisque 207, 153–211 (1992)

    MathSciNet  Google Scholar 

  133. Uhlmann, G. (ed.): Inside Out: Inverse Problems and Applications. MSRI Publ. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  134. Uhlmann, G.: (ed.) Inside Out: Inverse Problems and Applications. MSRI Publ., vol. 2 (to appear)

    Google Scholar 

  135. Uhlmann, G.: Commentary on Calderón’s paper on an inverse boundary value problem. In: Bellow, A., Kenig, C.E., Malliavin, P. (eds.) Selected Papers of Alberto P. Calderón. With commentary, pp. 623–636. Am. Math. Soc., Providence (2008)

    Google Scholar 

  136. Vainberg, B.: The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t→∞ of the solutions of nonstationary problems. Russ. Math. Surv. 30(2), 1–58 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  137. Vainberg, B.: Asymptotics Methods in the Equations of Mathematical Physics. Gordon and Breach, New York (1982)

    Google Scholar 

  138. Vo-Dinh, T. (ed.): Biomedical Photonics Handbook. CRC Press, Boca Raton (2003)

    Google Scholar 

  139. Wang, L.V. (ed.): Photoacoustic Imaging and Spectroscopy. CRC Press, Boca Raton (2009)

    Google Scholar 

  140. Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging. Springer, Berlin (2010). Chap. 28

    Google Scholar 

  141. Wang, L., Wu, H.: Biomedical Optics. Wiley, New York (2007)

    Google Scholar 

  142. Woo, E.J., Seo, J.K.: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol. Meas. 29, R1–R26 (2008)

    Article  Google Scholar 

  143. Xu, M., Wang, L.-H.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006)

    Article  Google Scholar 

  144. Xu, Y., Wang, L.V.: Time reversal in photoacoustic tomography or thermoacoustic tomography. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 117–120. CRC Press, Boca Raton (2009)

    Chapter  Google Scholar 

  145. Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004)

    Article  Google Scholar 

  146. Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Limited view thermoacoustic tomography. In: Wang, L.H. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 61–73. CRC Press, Boca Raton (2009). Chap. 6

    Google Scholar 

  147. Yuan, Z., Zhang, Q., Jiang, H.: Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. Opt. Express 14(15), 6749 (2006)

    Article  Google Scholar 

  148. Zhang, H., Wang, L.: Acousto-electric tomography. Proc. SPIE 5320, 145–149 (2004)

    Article  Google Scholar 

  149. Zhang, J., Anastasio, M.A.: Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. Proc. SPIE 6086, 608619 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NSF DMS Grant 0604778, as well as by MSRI and IAMCS. The author expresses his gratitude to these institutions. Thanks also go to many colleagues with whom the author discussed the hybrid imaging methods (the author’s attempt to write specific names produced a very long, while still incomplete, list).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kuchment .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor Leon Ehrenpreis, a great mathematician, human being, and friend.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Kuchment, P. (2012). Mathematics of Hybrid Imaging: A Brief Review. In: Sabadini, I., Struppa, D. (eds) The Mathematical Legacy of Leon Ehrenpreis. Springer Proceedings in Mathematics, vol 16. Springer, Milano. https://doi.org/10.1007/978-88-470-1947-8_12

Download citation

Publish with us

Policies and ethics