Skip to main content

Riassunto

Negli ultimi anni, la criticità dei pazienti in Sala Operatoria e in Terapia Intensiva ha subito un evidente aumento. Con questa complessità è cresciuta anche la necessità degli anestesistirianimatori di aumentare il livello di monitoraggio, soprattutto di tipo emodinamico. Nella sua evoluzione il monitoraggio ha dovuto acquisire caratteristiche particolari sotto molti punti di vista: è stato necessario embricare tecnologia e clinica fornendo molteplici soluzioni e, per rispondere alla necessità di monitorizzare in poco tempo e poco spazio (per esempio, nelle sale operatorie), si sono dovute semplificare metodiche complesse rendendole di più facile applicazione anche fuori dalla terapia intensiva, riducendo al contempo anche il livello di invasività. Ciascun tipo di monitoraggio è caratterizzato da pregi e difetti e risulta pertanto praticamente impossibile identificare quello ideale che vada bene in ogni condizione patologica e/o chirurgica o in qualsiasi paziente.

La conoscenza dei vari tipi di monitoraggio può aiutare a indirizzare verso la metodica più adeguata per quel particolare contesto. Per il moderno anestesista-rianimatore questa conoscenza si concretizza nella comprensione dei razionali, dei valori aggiunti e dei principali limiti derivanti dall’utilizzo delle metodiche di monitoraggio emodinamico di più comune utilizzo e nel sapere quali sono i principali errori che possono rendere i dati inattendibili.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  • AAVV (2003) Practice guidelines for pulmonary artery catheterization: an updated report by the American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization. Anesthesiology 99:988–1014

    Article  Google Scholar 

  • Clementi G (2002) Hemodynamic monitoring using a long radial catheter. Minerva Anestesiol 68:231–235

    CAS  PubMed  Google Scholar 

  • Darovic GB (2002) Monitoring. Saunders, Philadelphia, pp 199–241

    Google Scholar 

  • Favaro M, Resta M, Allaria B (2002) Thoracic impedence. Crit Care Med 17:791–812

    Google Scholar 

  • Gödje O, Höke K, Goetz AE (2002) Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med 30:52–58

    Article  PubMed  Google Scholar 

  • Gueugniaud PY, Muchada MR, Moussa M (1990) Oesophageal aortic blood flow echo-Doppler measurement during general anaesthesia in infants. JEMU 11:76–80

    Google Scholar 

  • Kubiceck WG (1966) Development and evaluation of an impedance cardiac output system. Aerospace Med 37:1208–1212

    Google Scholar 

  • Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery oclusion pressure, intrathoracic blood volume, and right end diastolic volume as indicators of cardiac preload. Journal of Critical Care 11:180–218

    Article  CAS  PubMed  Google Scholar 

  • Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  CAS  PubMed  Google Scholar 

  • Linton R, Band D, O’Brien T (1997) dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25:1796–1800

    Article  CAS  PubMed  Google Scholar 

  • Maisel A, Mueller C, Kirkwood A Jr (2008) Review state of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 10:824–839

    Article  CAS  PubMed  Google Scholar 

  • Marini JJ, Leatherman JW (2005) Pulmonary artery occlusion pressure: measurement, significance and clinical uses. In: Vincent JL (ed) Functional hemodynamic monitoring. Springer, Berlin

    Google Scholar 

  • Mattar JA, Shoemaker WC et al (1991) Systolic and diastolic time intervals in the critically ill patient. Crit Care Med 19:1382–1386

    Article  CAS  PubMed  Google Scholar 

  • Mayer J, Suttner S (2009) Cardiac output derived from arterial pressure waveform. Curr Opin Anaesthesiol 22:804–808

    Article  PubMed  Google Scholar 

  • Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  • Newman EV, Merrell M, Genecin A (1951) Dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4:735–746

    CAS  PubMed  Google Scholar 

  • Nilsson LB, Eldrup N, Berthelsen PG (2001) Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand 45:680–685

    Article  CAS  PubMed  Google Scholar 

  • Orme RM, Pigott DW, Mihm FG (2004) Measurement of cardiac output by transpulmonary arterial thermodilution using a long radial artery catheter. A comparison with intermittent pulmonary artery thermodilution. Anaesthesia 59:590–594

    Article  PubMed  Google Scholar 

  • Promonet C, Anglade D, Menaouar A (2000) Time-dependent pressure distortion in a cathetertransducer system: correction by fast flush. Anesthesiology 92:208–218

    Article  CAS  PubMed  Google Scholar 

  • Sakka SG, Rühl CC, Pfeiffer UJ (2000) Cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Katzenelson R, Berkenstadt H (2002) Transpulmonary thermodilution cardiac output measurement using the axillary artery in critically ill patients. J Clin Anesth 14:210–213

    Article  PubMed  Google Scholar 

  • Shoemaker WC, Howard Belzberg CC et al (1998) Multicenter study of non invasive monitoring system as alternatives to invasive monitoring of acutely ill emergency patients. Chest 114:1643–1652

    Article  CAS  PubMed  Google Scholar 

  • Silver MA, Maisel A, Yancy CW (2004) BNP Consensus Panel 2004: a clinical approach for the diagnostic, prognostic, screening, treatment monitoring, and therapeutic roles of natriuretic peptides in cardiovascular diseases. Congest Heart Fail 10:1–30

    Article  CAS  Google Scholar 

  • Teboul JL, Zapol WM, Brun-Buisson C (1989) A comparison of pulmonary artery occlusion pressure and left ventricular end-diastolic pressure during mechanical ventilation with PEEP in patients with severe ARDS. Anesthesiology 70:261–266

    Article  CAS  PubMed  Google Scholar 

  • Van de Water JM, Miller TW (2003) Impedance cardiography: the next vital sign technology? Chest 123:2028–2033

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Allaria, B., Dei Poli, M., Resta, M.V. (2011). Tecnologie. In: Allaria, B., Dei Poli, M. (eds) Il monitoraggio delle funzioni vitali nel perioperatorio non cardiochirurgico. Springer, Milano. https://doi.org/10.1007/978-88-470-1723-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1723-8_20

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1722-1

  • Online ISBN: 978-88-470-1723-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics