Skip to main content

Therapeutic Nucleic Acids

  • Chapter
Gene Therapy
  • 4463 Accesses

Abstract

As introduced in the previous chapter, the term “gene therapy” refers to a vast series of applications, both in vivo and ex vivo, based on the utilization of nucleic acids for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.1 Protein-Coding Genes

Further Reading

  • Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421

    Article  CAS  PubMed  Google Scholar 

  • Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585

    Article  CAS  PubMed  Google Scholar 

  • Clackson T (1997) Controlling mammalian gene expression with small molecules. Curr Opin Chem Biol 1:210–218

    Article  CAS  PubMed  Google Scholar 

  • Duca M, Vekhoff P, Oussedik K et al (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36:5123–5138

    Article  CAS  PubMed  Google Scholar 

  • Guo ZS, Li Q, Bartlett DL, Yang JY, Fang B (2008) Gene transfer: the challenge of regulated gene expression. Trends Mol Med 14:410–418

    Article  CAS  PubMed  Google Scholar 

  • Harvey DM, Caskey CT (1998) Inducible control of gene expression: prospects for gene therapy. Curr Opin Chem Biol 2:512–518

    Article  CAS  PubMed  Google Scholar 

  • Lobato MN, Rabbitts TH (2003) Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol Med 9:390–396

    Article  CAS  PubMed  Google Scholar 

  • Magnenat L, Schwimmer LJ, Barbas CF (2008) Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther 15:1223–1232

    Article  CAS  PubMed  Google Scholar 

  • Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26:230–235

    Article  CAS  PubMed  Google Scholar 

  • Toniatti C, Bujard H, Cortese R, Ciliberto G (2004) Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 11:649–657

    Article  CAS  PubMed  Google Scholar 

Selected Bibliography

  • Baum C, Margison GP, Eckert H-G et al (1996) Gene transfer to augment the therapeutic index of anticancer chemotherapy. Gene Ther 3:1–3

    CAS  PubMed  Google Scholar 

  • Brown BD, Gentner B, Cantore A et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  CAS  PubMed  Google Scholar 

  • Lobato MN, Rabbitts TH (2003) Intracellular antibodies and challenges facing their use as therapeutic agents. Trends Mol Med 9:390–396

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Ficca ML, Meyer RG, Kaiser H et al (2004) Comparative analysis of inducible expression systems in transient transfection studies. Anal Biochem 334:9–19

    Article  CAS  PubMed  Google Scholar 

  • No D, Yao TP, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 93:3346–3351

    Article  CAS  PubMed  Google Scholar 

  • Weber W, Fussenegger M (2006) Pharmacologic transgene control systems for gene therapy. J Gene Med 8:535–556

    Article  CAS  PubMed  Google Scholar 

Non-Coding Nucleic Acids Further Reading

Selected Bibliography

  • Bertrand E, Castanotto D, Zhou C et al (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3:75–88

    CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  • de Fougerolles AR (2008) Delivery vehicles for small interfering RNA in vivo. Hum Gene Ther 19:125–132

    Article  PubMed  Google Scholar 

  • Dollins CM, Nair S, Sullenger BA (2008) Aptamers in immunotherapy. Hum Gene Ther 19:443–450

    Article  CAS  PubMed  Google Scholar 

  • Fedor MJ (2000) Structure and function of the hairpin ribozyme. J Mol Biol 297:269–291

    Article  CAS  PubMed  Google Scholar 

  • Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    Article  CAS  PubMed  Google Scholar 

  • Good PD, Krikos AJ, Li SX et al (1997) Expression of small, therapeutic RNAs in human cell nuclei. Gene Ther 4:45–54

    Article  CAS  PubMed  Google Scholar 

  • Elmen J, Lindow M, Schutz S et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  CAS  PubMed  Google Scholar 

  • James W, al-Shamkhani A (1995) RNA enzymes as tools for gene ablation. Curr Opin Biotechnol 6:44–49

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  Google Scholar 

  • Lim LP, Glasner ME, Yekta S et al (2003) Vertebrate microRNA genes. Science 299:1540

    Article  CAS  PubMed  Google Scholar 

  • Matteucci MD, Wagner RW (1996) In pursuit of antisense. Nature 384:20–22

    CAS  PubMed  Google Scholar 

  • Mendoza-Maldonado R, Zentilin L, Giacca M (2001) Purging of chronic myelogenous leukemia cells by retrovirally expressed anti-bcr/abl ribozymes with specific celluar compartmentalization. Cancer Gene Ther 9:71–86

    Article  Google Scholar 

  • Mishra PK, Tyagi N, Kumar M, Tyagi SC (2009) MicroRNAs as a therapeutic target for cardiovascular disease. J Cell Mol Med 13:778–789

    Article  CAS  PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci U S A 99:1443–1448

    Article  CAS  PubMed  Google Scholar 

  • Prislei S, Buonomo SB, Michienzi A, Bozzoni I (1997) Use of adenoviral VAI small RNA as a carrier for cytoplasmic delivery of ribozymes. RNA 3:677–687

    CAS  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  • Rossi JJ (2008) Expression strategies for short hairpin RNA interference triggers. Hum Gene Ther 19:313–317

    Article  CAS  PubMed  Google Scholar 

  • Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465

    Article  CAS  PubMed  Google Scholar 

  • Seidman MM, Glazer PM (2003) The potential for gene repair via triple helix formation. J Clin Invest 112:487–494

    CAS  PubMed  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  Google Scholar 

  • Stein CA, Chen YC (1993) Antisense oligonucleotides as therapeutic agents: Is the bullet really magical? Science 261:1004–1012

    Article  CAS  PubMed  Google Scholar 

  • Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Macejak D, Couture L, Stinchcomb DT (1995) Ribozymes in gene therapy. Nat Med 1:277–278

    Article  CAS  PubMed  Google Scholar 

  • Weng DE, Masci PA, Radka SF et al (2005) A phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol Cancer Ther 4:948–955

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Mao Q, Paulson HL, Davidson BL (2002) siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20:1006–1010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Giacca, M. (2010). Therapeutic Nucleic Acids. In: Gene Therapy. Springer, Milano. https://doi.org/10.1007/978-88-470-1643-9_2

Download citation

Publish with us

Policies and ethics