Skip to main content

Basi neurobiologiche dei deficit cognitivi nella malattia di Parkinson

  • Chapter
Malattia di Parkinson e parkinsonismi

Riassunto

Quasi 200 anni fa, James Parkinson descrisse per la prima volta la malattia che porta tuttora il suo nome e che rappresenta uno dei più comuni e diffusi disordini su base neurodegenerativa (Parkinson, 1817).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  • Ahlskog JE, Richelson E, Nelson A et al (1991) Reduced D2 dopamine and muscarinic cholinergic receptor densities in caudate specimens from fluctuating parkinsonian patients. Ann Neurol 30(2):185–191

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232(2):331–356

    CAS  PubMed  Google Scholar 

  • Calabresi P, Maj R, Pisani A et al (1992) Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 12(11):4224–4233

    CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Parnetti L, Di Filippo M (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 5(11):974–983

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Di Filippo M (2007) Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 30(5):211–219

    Article  CAS  PubMed  Google Scholar 

  • Cash R, Dennis T, L’Heureux R et al (1987) Parkinson’s disease and dementia: norepinephrine and dopamine in locus ceruleus. Neurology 37(1):42–46

    CAS  PubMed  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287(5460): 2020–2022

    Article  CAS  PubMed  Google Scholar 

  • Cools R, Barker RA, Sahakian BJ, Robbins TW (2001) Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain 124(12):2503–2512

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL (1993) Frontal-subcortical circuits and human behavior. Arch Neurol 50(8):873–880

    CAS  PubMed  Google Scholar 

  • Dubois B, Danzé F, Pillon B et al (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22(1):26–30

    Article  CAS  PubMed  Google Scholar 

  • Dubois B, Ruberg M, Javoy-Agid F et al (1983) A subcortico-cortical cholinergic system is affected in Parkinson’s disease. Brain Res 288(1–2):213–218

    CAS  PubMed  Google Scholar 

  • Emre M (2003a) Dementia associated with Parkinson’s disease. Lancet Neurol 2(4):229–237

    Article  CAS  PubMed  Google Scholar 

  • Emre M (2003b) What causes mental dysfunction in Parkinson’s disease? Mov Disord Suppl 6:S63–71

    Article  Google Scholar 

  • Emre M (2004) Dementia in Parkinson’s disease: cause and treatment. Curr Opin Neurol 17(4):399–404

    Article  PubMed  Google Scholar 

  • Hietanen M, Teräväinen H (1988) The effect of age of disease onset on neuropsychological performance in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51(2):244–249

    Article  CAS  PubMed  Google Scholar 

  • Huber SJ, Shulman HG, Paulson GW, Shuttleworth EC (1987). Fluctuations in plasma dopamine level impair memory in Parkinson’s disease. Neurology 37(8):1371–1375

    CAS  PubMed  Google Scholar 

  • Jog MS, Kubota Y, Connolly CI et al (1999) Building neural representations of habits. Science 286(5445):1745–1749

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18(12):527–535

    Article  CAS  PubMed  Google Scholar 

  • Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69(22):2093–2104

    Article  PubMed  Google Scholar 

  • Koechlin E, Danek A, Burnod Y, Grafman J (2002) Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences in humans. Neuron 35(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998a) Parkinson’s disease. First of two parts. N Engl J Med 339(15):1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Lang AE, Lozano AM (1998b) Parkinson’s disease. Second of two parts. N Engl J Med. 339(16):1130–1143

    Article  CAS  PubMed  Google Scholar 

  • Lange KW, Wells FR, Jenner P, Marsden CD (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J Neurochem 60(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979–980

    Article  CAS  PubMed  Google Scholar 

  • Litvan I, Mohr E, Williams J et al (1991) Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 54(1):25–29

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  • Marder K, Tang MX, Cote L et al (1995) The frequency and associated risk factors for dementia in patients with Parkinson’s disease. Arch Neurol 52(7):695–701

    CAS  PubMed  Google Scholar 

  • Mattila PM, Rinne JO, Helenius H et al (2000) Alpha-synuclein-immunoreactive cortical Lewy bodies are associated with cognitive impairment in Parkinson’s disease. Acta Neuropathol 100(3):285–290

    Article  CAS  PubMed  Google Scholar 

  • Mayeux R, Denaro J, Hemenegildo N et al (1992) A population-based investigation of Parkinson’s disease with and without dementia. Relationship to age and gender. Arch Neurol 49(5):492–497

    CAS  PubMed  Google Scholar 

  • Monchi O, Petrides M, Doyon J et al (2004) Neural bases of set-shifting deficits in Parkinson’s disease. J Neurosci 24(3):702–710

    Article  CAS  PubMed  Google Scholar 

  • Morgante F, Espay AJ, Gunraj C et al (2006) Motor cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain 129(4):1059–1069

    Article  PubMed  Google Scholar 

  • Mortimer JA, Pirozzolo FJ, Hansch EC, Webster DD (1982) Relationship of motor symptoms to intellectual deficits in Parkinson disease. Neurology 32(2):133–137

    CAS  PubMed  Google Scholar 

  • Parkinson J (1817) An essay on the shaking palsy. London

    Google Scholar 

  • Perry EK, Curtis M, Dick DJ et al (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48(5):413–21

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Centonze D, Håkansson K et al (2003) Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 6(5):501–506

    CAS  PubMed  Google Scholar 

  • Pillon B, Dubois B, Cusimano G et al (1989) Does cognitive impairment in Parkinson’s disease result from non-dopaminergic lesions? J Neurol Neurosurg Psychiatry 52(2):201–206

    Article  CAS  PubMed  Google Scholar 

  • Pillon B, Dubois B, Lhermitte F, Agid Y (1986) Heterogeneity of cognitive impairment in progressive supranuclear palsy, Parkinson’s disease, and Alzheimer’s disease. Neurology 36(9):1179–1185

    CAS  PubMed  Google Scholar 

  • Pillon B, Dubois B, Ploska A, Agid Y (1991) Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s, and Parkinson’s diseases and progressive supranuclear palsy. Neurology 41(5):634–643

    CAS  PubMed  Google Scholar 

  • Pimlott SL, Piggott M, Owens J et al (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Rinne JO, Myllykylä T, Lönnberg P, Marjamäki P (1991) A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 547(1):167–170

    Article  CAS  PubMed  Google Scholar 

  • Rinne JO, Rummukainen J, Paljärvi L, Rinne UK (1989) Dementia in Parkinson’s disease is related to neuronal loss in the medial substantia nigra. Ann Neurol 26(1):47–50

    Article  CAS  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L et al (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275(2):321–328

    Article  CAS  PubMed  Google Scholar 

  • Smith Y, Kieval JZ (2000) Anatomy of the dopamine system in the basal ganglia. Trends Neurosci 23(10 Suppl):S28–33

    Article  Google Scholar 

  • Stam CJ, Visser SL, Op de Coul AA et al (1993) Disturbed frontal regulation of attention in Parkinson’s disease. Brain 116(5):1139–1158

    Article  PubMed  Google Scholar 

  • Starkstein SE, Mayberg HS, Leiguarda R et al (1992) A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 55(5):377–382

    Article  CAS  PubMed  Google Scholar 

  • Stern Y, Marder K, Tang MX, Mayeux R (1993) Antecedent clinical features associated with dementia in Parkinson’s disease. Neurology 43(9):1690–1692

    CAS  PubMed  Google Scholar 

  • Stern Y, Mayeux R, Côté L (1984) Reaction time and vigilance in Parkinson’s disease. Possible role of altered norepinephrine metabolism. Arch Neurol 41(10):1086–1089

    CAS  PubMed  Google Scholar 

  • Stern Y, Tetrud JW, Martin WR et al (1990) Cognitive change following MPTP exposure. Neurology 40(2):261–264

    CAS  PubMed  Google Scholar 

  • Tiraboschi P, Hansen LA, Alford M et al (2000) Cholinergic dysfunction in diseases with Lewy bodies. Neurology 54(2):407–411

    CAS  PubMed  Google Scholar 

  • Wang M, Vijayraghavan S, Goldman-Rakic PS (2004) Selective D2 receptor actions on the functional circuitry of working memory. Science 303(5659):853–856

    Article  CAS  PubMed  Google Scholar 

  • Whitehouse PJ, Hedreen JC, White, CL 3rd, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13(3):243–248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Di Filippo, M., Calabresi, P. (2009). Basi neurobiologiche dei deficit cognitivi nella malattia di Parkinson. In: Malattia di Parkinson e parkinsonismi. Springer, Milano. https://doi.org/10.1007/978-88-470-1490-9_6

Download citation

Publish with us

Policies and ethics