Skip to main content

Riassunto

La scansione total body consente un’analisi a tre compartimenti dell’intero corpo (Figg. 36.1 e 36.2) grazie alla quale è possibile ottenere con un’unica scansione i risultati relativi alla misurazione totale e distrettuale della massa ossea espressa in BMD (Fig. 36.3) e della composizione corporea, distinta in massa grassa (fat mass, FM) e massa magra (lean mass) espressa in termini di kg o in valore % totale e distrettuale (Fig. 36.4). Le proteine, il glicogeno, l’acqua e la materia organica non ossea) sono inclusi nella componente magra.

Scansione densitometrica a raggi X a doppia energia (DXA) total body dell’adulto con mappa sulla base della percentuale di grasso. Notare come tutto il corpo sia compreso nell’area di scansione

Scansione DXA total body dell’adulto. Studio della composizione corporea. Lo scheletro risulta distinto dalla massa muscolare e grassa

Scansione DXA total body dell’adulto. Risultato relativo alla sola componente scheletrica

Scansione DXA total body dell’adulto. Risultato relativo alla componente magra (Lean mass) e grassa (Fat mass)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Goodsitt MM (1992) Evaluation of a new set of calibration standards for the measurement of fat content via DPA and DXA. Med Phys 19:35–44

    Article  CAS  PubMed  Google Scholar 

  2. Mazzes RB, Hanson JA, Payne R et al (2000) Axial and total body bone densitometry using a narrow-angle fan-beam. Osteoporos Int 11:158–166

    Article  Google Scholar 

  3. Modlesky CM, Lewis Rd, Yetman KA et al (1996) Comparison of body composition and bone mineral measurements from two DXA instruments in young men. Am J Clin Nutr 64:669–676

    CAS  PubMed  Google Scholar 

  4. Tothill P, Avenell A, Love J et al (1994) Comparison between Hologic, Lunar, and Norland dual-energy X ray absorptiometers and others techniques used for whole-body soft tissue measurements. Eur J Clin Nutr 48:781–794

    CAS  PubMed  Google Scholar 

  5. Albanese CV, Diesel E, Genant HK (2003) A review: clinical application of body. composition measurements using DXA. J Clin Densit 6:161–172

    Google Scholar 

  6. Ibanez L, Ong K, Zegher F et al (2003) Fat distribution in non-obese girls with and without precocious pubarchie: central adiposity related to insulinaemia and androgenaemia from prepuberty to postmenarche. Clin Endocrinol 58:372–379

    Article  Google Scholar 

  7. Kyle UG, Genton L, Hans D et al (2001) Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Europ J Clin Nutr 55:663–672

    Article  CAS  Google Scholar 

  8. Chumlea WC, Guo SS, Kuczmarski et al (2002) Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes 26:1596–1611

    Article  CAS  Google Scholar 

  9. Baumgartner RN, Stauber PM, McHugh D et al (1995) Cross-sectional age differences in body composition in persons 60+ years of age. J Gerontol 50A:M307–M316

    Google Scholar 

  10. Gallagher D, Visser M, De Meersman RE et al (1995) Appendicular skeletal muscle mass: effects of age, gender and ethnicity. J Appl Physiol 83:992–997

    Google Scholar 

  11. Volpato S, Romagnoni F, Soattin L et al (2004) Body mass index, body cell mass, and 4-year all cause mortality risk in older nursing home resident. J Am Geriatr 52:886–891

    Article  Google Scholar 

  12. Song MY, Ruts E, Kim J et al (2004) Sarcopenia and increased adipose tissue infiltration of muscle in elderly African American women. Am J Clin Nutr 79:874–880

    CAS  PubMed  Google Scholar 

  13. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50:11–16

    PubMed  Google Scholar 

  14. Nicklas BJ, Penninx BWJH, Cesari M et al (2004) Association of visceral adipose tissue with incident myocardial infarction in older men and women. Am J Epidemiol 160:741–749

    Article  PubMed  Google Scholar 

  15. Jorgensen L, Joakimsen O, Berntsen et al (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:49–56

    Article  Google Scholar 

  16. Poehlman ET (2002) Menopause, energy expenditure, and body composition. Acta Obstet Gynaecol Scand 81:603–611

    Google Scholar 

  17. De Lorenzo A, Lello S, Andreoli A et al (1998) Body composition and androgen pattern in the early period of postmenopause. Gynaecol Endocrinol 12:171–177

    Article  Google Scholar 

  18. Andreoli A, Monteleone M, Van Loan M et al (2001) Effect of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exer 33:507–511

    CAS  Google Scholar 

  19. Morley JE, Baumgartner RN, Roubenoff R et al (2001) Sarcopenia. J Lab Clin Med 137:231–243

    Article  CAS  PubMed  Google Scholar 

  20. Kyle UG, Genton L, Hans D et al (2001) Total body mass, fat mass, fat-free mass, and skeletal muscle in older people: cross-sectional differences in 60-year-old persons. J Am Geriatr Soc 49:1633–1640

    Article  CAS  PubMed  Google Scholar 

  21. De Lorenzo, Deurenberg P, Pietrantuono M et al (2003) How fat is obese? Acta Diab 40:S254–S257

    Article  Google Scholar 

  22. Fantuzzi G (2005) Adipose tissue, adipokines and inflammation. J Allergy Clin Immunol 115:911–919

    Article  CAS  PubMed  Google Scholar 

  23. Engeli S, Feldpausch M, Gorzelniak K et al (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947

    Article  CAS  PubMed  Google Scholar 

  24. Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 33:1078–1081

    Article  CAS  PubMed  Google Scholar 

  25. Trayhurn P, Wood IS (2004) Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92:347–355

    Article  CAS  PubMed  Google Scholar 

  26. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW (1999) C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 19:972–978

    CAS  PubMed  Google Scholar 

  27. Festa A, D’Agostino R Jr, Williams K et al (2001) The relation of body fat mass and distribution to markers of chronic inflammation. Int J Obes Relat Metab Disord 25:1407–1415

    Article  CAS  PubMed  Google Scholar 

  28. Engstrom G, Hedblad B, Stavenow L et al (2003) Inflammation-sensitive plasma proteins are associated with future weight gain. Diabetes 52:2097–2101

    Article  PubMed  Google Scholar 

  29. Yudkin JS (2003) Adipose tissue, insulin action and vascular disease: inflammatory signals. Int J Obes 27(suppl):S25–S28

    Article  CAS  Google Scholar 

  30. Ridker PM, Hennekens CH, Buring JE, Rifai N (2000) Creactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 342:836–843

    Article  CAS  PubMed  Google Scholar 

  31. Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a) and standard cholesterol screening as predictors of peripheral arterial disease. JAMA 285:2481–2485

    Article  CAS  PubMed  Google Scholar 

  32. Hashimoto H, Kitagawa K, Hougaku H et al (2001). C-reactive protein is an independent predictor of the rate of increase in early carotid atherosclerosis. Circulation 104:63–67

    Article  CAS  PubMed  Google Scholar 

  33. Van Der Meer IM, De Maat MP, Hak AE, Kiliaan AJ et al (2002). C-reactive protein predicts progression of atherosclerosis measured at various sites in the arterial tree: the Rotterdam Study. Stroke 33:2750–2755

    Article  Google Scholar 

  34. Ouchi N, Kihara S, Arita Y et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    CAS  PubMed  Google Scholar 

  35. Park HS, Park JY, Yu R (2005) Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-a and IL-6. Diabetes Res Clin Pract 69:29ñ35

    Article  CAS  PubMed  Google Scholar 

  36. Ouchi N, Kihara S, Arita Y, Maeda K et al (1999). Novel modulator for endothelial adhesion molecules: adipocytederived plasma protein adiponectin. Circulation 100:2473–2476

    CAS  PubMed  Google Scholar 

  37. Argilès, López-Soriano J, Almendro V et al (2005) Crosstalk between skeletal muscle and adipose tissue: a link with obesity? Med Res Rev 25:49–65

    Article  PubMed  Google Scholar 

  38. Karelis AD, St-Pierre DH, Conus F et al (2004) Metabolic and body composition factors in subgroups of obesity: what do we know? J Clin Endocrinol Metab 89:2569–2575

    Article  CAS  PubMed  Google Scholar 

  39. Karelis AD, Faraj M, Bastard JP et al (2005) The metabolically healthy but obese individual presents a favorable inflammation profile. J Clin Endocrinol Metab 90:4145–4150

    Article  CAS  PubMed  Google Scholar 

  40. De Lorenzo A, Martinoli R, Vaia F, Di Renzo L (2006). Normal weight obese (NWO) women: an evaluation of a candidate new syndrome. Nutr Metab Cardiovasc Dis 16:513–523

    Article  PubMed  Google Scholar 

  41. Di Renzo L, Del Gobbo V, Bigioni M et al (2006) Body composition analyses in normal weight obese women. Eur Rev Med Pharmacol Sci 10(4): 191–196

    PubMed  Google Scholar 

  42. De Lorenzo A, Del Gobbo V, Premrov MG et al (2007) Normal weight obese syndrome: an early inflammation? Am J Clin Nutr 85:40–45

    PubMed  Google Scholar 

  43. Di Renzo L, Bertoli A, Bigioni M et al (2008) Body composition and-174G/C interleukin-6 promoter gene polymorphism: association with progression of insuline resistance in normal weight obese syndrome. Current pharmaceutical design 2008. Curr Pharm Res. 2008;14(26):2699–2706

    Article  Google Scholar 

  44. Di Renzo L, Bigioni M, Bottini FG et al (2006). Normal weight obese syndrome: role of single nucleotide polymorfism of IL-15Ra and MTHFR 677ÆT genes in the relationship between body composition and resting metabolic rate. Eur Rev Med Pharmacol Sci 10(5):235–245

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Albanese, C.V., Di Renzo, L., De Lorenzo, A. (2009). Composizione corporea con tecnica DXA. In: Osteoporosi e malattie metaboliche dell’osso. Springer, Milano. https://doi.org/10.1007/978-88-470-1357-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1357-5_36

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1356-8

  • Online ISBN: 978-88-470-1357-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics