Skip to main content

Mechanism of Action of Thyroid Hormone on the Cardiac Vascular System

  • Chapter
Thyroid and Heart Failure

Abstract

The influences of thyroid hormone action on cardiovascular function present a complex mix of beneficial adaptive and maladaptive effects. Increased thyroid hormone action mediates an increased speed of diastolic relaxation and an increased speed and force of systolic contraction. Beneficial thyroid hormone effects are caused in part by alterations in calcium handling, which are based on changes in the expression of important proteins involved in this process. These include increases in the level of calcium ATPase of the sarcoplasmic reticulum (SERCa2) and decreases in phospholamban levels. Increased thyroid hormone action also has marked electrophysiological effects resulting in increased heart rate and an increased propensity for cardiac arrhythmias, especially atrial fibrillation. In addition, thyroid hormone exerts marked effects, on the vascular system, decreasing arterial resistance and thus diminishing cardiac afterload. Hyperthyroidism of some duration results in cardiac hypertrophy. Recently, thyroid hormone analogues have been developed that target the thyroid hormone receptor-β in the liver, mediating the lowering of lipid levels without significant other cardiac effects, especially without an increase in heart rate or cardiac arrhythmias. Severe heart failure of different causes can lead to the nonthyroidal illness syndrome, resulting in decreased thyroid hormone levels. Studies in human beings and animal models have also shown that the levels of thyroid hormone receptor-α and-β are decreased in the failing heart. Alternatively, the syndrome may lead to a cardiac status compatible with a “hypothyroid heart.” It is currently unclear whether the nonthyroidal illness syndrome presents an adaptive or a maladaptive phenomenon whit respect to cardiac function. In some clinical trials, administration of thyroid hormone to patients with heart-failure-induced nonthyroidal illness syndromes has had beneficial effects; however, other trials did not show improvements in cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parry CH (1825) Collections from the unpublished papers of the late Caleb Hilliel Parry, vol 2. London, p 111

    Google Scholar 

  2. Graves RJ (1835) Clinical lectures. Lond Med Surg J 7:516

    Google Scholar 

  3. von Basedow CA (1840) Exophthalmos durch Hypertrophie des Zellgewebes in der Augenhöhle. Wochenschr Heilkd 6:197

    Google Scholar 

  4. Zondek H (1918) Das Myxoedemherz. Munch Med Wochenschr 65:1180

    Google Scholar 

  5. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:5011–5019

    Article  Google Scholar 

  6. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26:704–728

    Article  PubMed  CAS  Google Scholar 

  7. Fazio S, Palmieri EA, Lombardi G, Biondi B (2004) Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 59:31–50

    Article  PubMed  CAS  Google Scholar 

  8. Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. J Endocrinol 187:1–15

    Article  PubMed  CAS  Google Scholar 

  9. Shimizu T, Koide S, Noh JY et al (2002) Hyperthyroidism and the management of atrial fibrillation. Thyroid 12:489–493

    Article  PubMed  Google Scholar 

  10. Le Bouter S, Demolombe S, Chambellan A et al (2003) Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res 92:234–242

    Article  PubMed  Google Scholar 

  11. Owen PJ, Sabit R, Lazarus JH (2007) Thyroid disease and vascular function. Thyroid 17:519–524

    Article  PubMed  CAS  Google Scholar 

  12. Tomanek RJ, Busch TL (1998) Coordinated capillary and myocardial growth in response to thyroxine treatment. Anat Rec 251:44–49

    Article  PubMed  CAS  Google Scholar 

  13. Johansson C, Göthe S, Forrest D et al (1999) Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor beta or alpha1 and beta. Am J Physiol 276(6 Pt 2):H2006–2012

    PubMed  CAS  Google Scholar 

  14. Gloss B, Trost S, Bluhm W et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142:544–550

    Article  PubMed  CAS  Google Scholar 

  15. Berkenstam A, Kristensen J, Mellström K et al (2008) The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci U S A 105:663–667

    Article  PubMed  CAS  Google Scholar 

  16. Erion MD, Cable EE, Ito BR et al (2007) Targeting thyroid hormone receptor-beta agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci U S A 104:15490–15495

    Article  PubMed  CAS  Google Scholar 

  17. Kinugawa K, Minobe WA, Wood WM et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  18. Pingitore A, Galli E, Barison A et al (2008) Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab 93:1351–1358

    Article  PubMed  CAS  Google Scholar 

  19. Yen PM, Ando S, Feng X et al (2006) thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 246(1–2):121–127

    Article  PubMed  CAS  Google Scholar 

  20. Bassett JH, Harvey CB, Williams GR (2003) Mechanisms of thyroid hormone receptor-specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213:1–11

    Article  PubMed  CAS  Google Scholar 

  21. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29:211–218

    PubMed  CAS  Google Scholar 

  22. Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672

    Article  PubMed  CAS  Google Scholar 

  23. McKenna NJ, O’Malley BW (2002) Minireview: nuclear receptor coactivators — an update. Endocrinology 143:2461–2465

    Article  PubMed  CAS  Google Scholar 

  24. Shupnik MA (2000) Thyroid hormone suppression of pituitary hormone gene expression. Rev Endocr Metab Disord 1(1–2):35–42

    Article  PubMed  CAS  Google Scholar 

  25. Goodson ML, Jonas BA, Privalsky ML (2005) Alternative mRNA splicing of SMRT creates functional diversity by generating corepressor isoforms with different affinities for different nuclear receptors. J Biol Chem 280:7493–7503

    Article  PubMed  CAS  Google Scholar 

  26. Oppenheimer JH, Schwartz HL, Koerner D, Surks MI (1974) Limited binding capacity sites for L-triiodothyronine in rat liver nuclei. Nuclear-cytoplasmic interrelation, binding constants, and cross-relativity with L-thyroxine. J Clin Invest 53:768–777

    Article  PubMed  CAS  Google Scholar 

  27. Carvalho-Bianco SD, Kim BW, Zhang JX et al (2004) Chronic cardiac-specific thyrotoxicosis increases myocardial b-adrenergic responsiveness. Mol Endocrinol 18:1840–1849

    Article  PubMed  CAS  Google Scholar 

  28. Bachman ES, Hampton TG, Dhillon H et al (2004) The metabolic and cardiovascular effects of hyperthyroidism are largely independent of b-adrenergic stimulation. Endocrinology 145:2767–2774

    Article  PubMed  CAS  Google Scholar 

  29. van Rooij E, Sutherland LB, Qi X et al (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579

    Article  PubMed  CAS  Google Scholar 

  30. Shimoni Y, Fiset C, Clark RB et al (1997) Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol 500(Pt 1):65–73

    PubMed  CAS  Google Scholar 

  31. Ojamaa K, Sabet A, Kenessey A et al (1999) Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rapid and chamber specific. Endocrinology 140:3170–3176

    Article  PubMed  CAS  Google Scholar 

  32. Le Bouter S, Demolombe S, Chambellan A et al (2003) Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res 92:234–242

    Article  PubMed  Google Scholar 

  33. Jiang M, Xu A, Tokmakejian S, Narayanan N (2000) Thyroid hormone-induced overexpression of functional ryanodine receptors in the rabbit heart. Am J Physiol Heart Circ Physiol 278:H1429–1438

    PubMed  CAS  Google Scholar 

  34. Shenoy R, Klein I, Ojamaa K (2000) Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Am J Physiol Heart Circ Physiol 281:H1690–1696

    Google Scholar 

  35. Danzi S, Klein I (2003) Thyroid hormone and blood pressure regulation. Curr Hypertens Rep 5:513–520

    Article  PubMed  Google Scholar 

  36. Khalife WI, Tang YD, Kuzman JA et al (2005) Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289:H2409–2415

    Article  PubMed  CAS  Google Scholar 

  37. Zwaveling J, Pfaffendorf M, van Zwieten PA (1997) The direct effects of thyroid hormones on rat mesenteric resistance arteries. Fundam Clin Pharmacol 11:41–46

    Article  PubMed  CAS  Google Scholar 

  38. Ojamaa K, Klemperer JD, Klein I (1996) Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6:502–512

    Article  Google Scholar 

  39. Mamiya S, Hagiwara M, Inoue S, Hidaka H (1989) Thyroid hormones inhibit platelet function and myosin light chain kinase. J Biol Chem 264:8575–8579

    PubMed  CAS  Google Scholar 

  40. Owen PJ, Ying H, Lang D et al (2007) Endothelial dysfunction in a murine model of thyroid hormone resistance. Eur J Clin Invest 37:390–395

    Article  PubMed  CAS  Google Scholar 

  41. Mizuma H, Murakami M, Mori M (2001) Thyroid hormone activation in human vascular smooth muscle cells: expression of type II iodothyronine deidinase. Circ Res 88:313–318

    PubMed  CAS  Google Scholar 

  42. Tomanek RJ, Doty MK, Sandra A (1998) Early coronary angiogenesis in response to thyroxine: growth characteristics and upregulation of basic fibroblast growth factor. Circ Res 82:587–593

    PubMed  CAS  Google Scholar 

  43. Wang X, Zheng W, Christensen LP, Tomanek RJ (2003) DITPA stimulates bFGF, VEGF, angiopoietin, and Tie-2 and facilitates coronary arteriolar growth. Am J Physiol Heart Circ Physiol 284:H613–618

    PubMed  CAS  Google Scholar 

  44. Tomanek RJ, Zimmerman MB, Suvarna PR et al (1998) A thyroid hormone analogue stimulates angiogenesis in the post-infarcted rat heart. J Mol Cell Cardiol 30:923–932

    Article  PubMed  CAS  Google Scholar 

  45. Mousa SA, O’Connor L, Davis FB, Davis PJ (2006) Proangiogenesis action of the thyroid hormone analogue 3,5-diiodothyropropionic acid (DITPA) is initiated at the cell surface and is integrin mediated. Endocrinology 147:1602–1607

    Article  PubMed  CAS  Google Scholar 

  46. Shiojima I, Sato K, Izumiya Y et al (2005) Distribution of coordinated cardiac hypertrophy and angiogenesis contributes to the transition of heart failure. J Clin Invest 115:2108–2118

    Article  PubMed  CAS  Google Scholar 

  47. Chiellini G, Apriletti JW, Yoshihara HA et al (1998) A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol 5:299–306

    Article  PubMed  CAS  Google Scholar 

  48. Trost SU, Swanson E, Gloss B et al (2000) The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 141:3057–3064

    Article  PubMed  CAS  Google Scholar 

  49. Bryzgalova G, Effendic S, Khan A et al (2008) Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor beta subtype selective agonist KB-141. J Steroid Biochem Mol Biol 111:262–267

    Article  PubMed  CAS  Google Scholar 

  50. Sherman SI, Ringel MD, Smith MJ et al (1997) Augmented hepatic and skeletal thyromimetic effects of tiratricol in comparison with levothyroxine. J Clin Endocrinol Metab 82:2153–2158

    Article  PubMed  CAS  Google Scholar 

  51. Young WF Jr, Gorman CA, Jiang NS et al (1984) L-thyroxine contamination of pharmaceutical D-thyroxine; probable cause of therapeutic effect. Clin Pharmacol Ther 36:781–787

    PubMed  Google Scholar 

  52. Shuvy M, Shifman OE, Nusair S et al (2008) Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity. Cardiovasc Pathol Feb 21 (Epub ahead of print). doi:10.1016/j.carpath.2007.12.015

    Google Scholar 

  53. Schmidt-Ott UM, Ascheim DD (2006) Thyroid hormone and heart failure. Curr Heart Fail Resp 3:114–119

    Article  CAS  Google Scholar 

  54. Rodondi N, Bauer DC, Cappola AR et al (2008) Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J Am Coll Cardiol 52:1152–1159

    Article  PubMed  CAS  Google Scholar 

  55. Ladenson PW, Sherman SI, Baughman KL et al (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci U S A 89:5251–5255

    Article  PubMed  CAS  Google Scholar 

  56. Blumh WF, Meyer M, Sayen MR et al (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43:382–388

    Article  Google Scholar 

  57. Arai M, Otsu K, MacLennan DH et al (1991) Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res 69:266–273

    PubMed  CAS  Google Scholar 

  58. Gloss B, Villegas S, Villarreal FJ et al (2000) Thyroid hormone-induced stimulation of the sarcoplasmic reticulum Ca(2+) ATPase gene is inhibited by LIF and IL-6. Am J Physiol Endocrinol Metab 278:E738–743

    PubMed  CAS  Google Scholar 

  59. Adler SM, Wartofsky L (2007) The nonthyroidal illness syndrome. Endocrinol Metab Clin North Am 36:657–672

    Article  PubMed  CAS  Google Scholar 

  60. Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148:2670–2677

    Article  CAS  Google Scholar 

  61. Klemperer JD, Klein IL, Ojamaa K et al (1996) Triiodothyronine therapy lowers the incidence of atrial fibrillation after cardiac operations. Ann Thorac Surg 61:1323–1327

    Article  PubMed  CAS  Google Scholar 

  62. Bennett-Guerrero E, Jimenez JL, White WD et al (1996) Cardiovascular effects of intravenous triiodothyronine in patients undergoing coronary artery bypass graft surgery. A randomized, double-blind, placebo-controlled trial. Duke T3 study group. JAMA 275:687–692

    Article  PubMed  CAS  Google Scholar 

  63. Hajjar RJ, Zsebo K, Deckelbam L et al (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14:355–367

    Article  PubMed  CAS  Google Scholar 

  64. Byrne MJ, Power JM, Preovolos A et al (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 15:1550–1557

    Article  PubMed  CAS  Google Scholar 

  65. Vinge LE, Raake PW, Koch WJ (2008) Gene therapy in heart failure. Circ Res 102:1458–1470

    Article  PubMed  CAS  Google Scholar 

  66. Kahaly GJ, Dillman WH (2005) Thyroid hormone action in the heart. Endocrine Rev 26:704–728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Italia

About this chapter

Cite this chapter

Dillmann, W.H. (2009). Mechanism of Action of Thyroid Hormone on the Cardiac Vascular System. In: Iervasi, G., Pingitore, A. (eds) Thyroid and Heart Failure. Springer, Milano. https://doi.org/10.1007/978-88-470-1143-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1143-4_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1142-7

  • Online ISBN: 978-88-470-1143-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics