Skip to main content

Part of the book series: Topics in Neuroscience ((TOPNEURO))

  • 1339 Accesses

Abstract

Over the past decade, modern structural magnetic resonance imaging (MRI) techniques have been extensively used for the study of patients with multiple sclerosis (MS) [1] with the ultimate goal of increasing our understanding of the mechanisms responsible for the accumulation of irreversible disability. The application of these techniques has provided important insights into the pathobiology of MS. First, it has been demonstrated that MS-related damage is not restricted to T2-visible lesions, but also involves, diffusely, the normal-appearing white matter (NAWM) and gray matter (GM) [1]. Secondly, it has been shown that the neurodegenerative component of the disease is not a late phenomenon and that it is not completely driven by inflammatory demyelination [2]. Finally, the contribution of axon damage to the clinical manifestations of the disease and to its clinical worsening over time has been confirmed [3, 4]. Despite these improvements, the correlation between the results of MRI and clinical findings remains suboptimal. This might be explained, at least partially, by the variable effectiveness of reparative and recovery mechanisms following MS-related tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Filippi M, Rocca MA, Comi G (2003) The use of quantitative magnetic-resonancebased techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2:337–346

    Article  PubMed  CAS  Google Scholar 

  2. Inglese M, Benedetti B, Filippi M (2005) The relation between MRI measures of inflammation and neurodegeneration in multiple sclerosis. J Neurol Sci 15:15–19

    Article  Google Scholar 

  3. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271–278

    Article  PubMed  CAS  Google Scholar 

  4. Bjartmar C, Wujek JR, Trapp BD (2003) Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease. J Neurol Sci 15:165–171

    Article  Google Scholar 

  5. Waxman SG, Ritchie JM (1993) Molecular dissection of the myelinated axon. Ann Neurol 33:121–136

    Article  PubMed  CAS  Google Scholar 

  6. Filippi M, Rocca MA (2003) Disturbed function and plasticity in multiple sclerosis as gleaned from functional magnetic resonance imaging. Curr Opin Neurol 16:275–282

    Article  PubMed  Google Scholar 

  7. Ogawa S, Menon RS, Tank DW et al (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging: a comparison of signal characteristics with a biophysical model. Biophys J 64:803–812

    Article  PubMed  CAS  Google Scholar 

  8. Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2:148–156

    Article  PubMed  CAS  Google Scholar 

  9. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  10. Vanzetta I, Grinvald A (1999) Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging. Science 286:1555–1558

    Article  PubMed  CAS  Google Scholar 

  11. Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  PubMed  CAS  Google Scholar 

  12. Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited-again. Neuroimage 2:173–181

    Article  PubMed  CAS  Google Scholar 

  13. Clanet M, Berry I, Boulanouar K (1997) Functional imaging in multiple sclerosis. Int MS J 4:26–32

    Google Scholar 

  14. Rombouts SA, Lazeron RH, Scheltens P et al (1998) Visual activation patterns in patients with optic neuritis: an fMRI pilot study. Neurology 50:1896–1899

    PubMed  CAS  Google Scholar 

  15. Lee MA, Reddy H, Johansen-Berg H et al (2000) The motor cortex shows adaptive functional changes to brain injury from multiple sclerosis. Ann Neurol 47:606–613

    Article  PubMed  CAS  Google Scholar 

  16. Reddy H, Narayanan S, Matthews PM et al (2000) Relating axonal injury to functional recovery in MS. Neurology 54:236–239

    PubMed  CAS  Google Scholar 

  17. Reddy H, Narayanan S, Arnoutelis R et al (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123:2314–2320

    Article  PubMed  Google Scholar 

  18. Werring DJ, Bullmore ET, Toosy AT et al (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiat 68:441–449

    Article  PubMed  CAS  Google Scholar 

  19. Langkilde AR, Frederiksen JL, Rostrup E, Larsson HB (2002) Functional MRI of the visual cortex and visual testing in patients with previous optic neuritis. Eur J Neurol 9:277–286

    Article  PubMed  CAS  Google Scholar 

  20. Toosy AT, Werring DJ, Bullmore ET et al (2002) Functional magnetic resonance imaging of the cortical response to photic stimulation in humans following optic neuritis recovery. Neurosci Lett 330:255–259

    Article  PubMed  CAS  Google Scholar 

  21. Russ MO, Cleff U, Lanfermann H et al (2002) Functional magnetic resonance imaging in acute unilateral optic neuritis. J Neuroimaging 12:339–350

    Article  PubMed  Google Scholar 

  22. Filippi M, Rocca MA, Falini A et al (2002) Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage 15:537–546

    Article  PubMed  CAS  Google Scholar 

  23. Rocca MA, Falini A, Colombo B et al (2002) Adaptive functional changes in the cerebral cortex of patients with non-disabling MS correlate with the extent of brain structural damage. Ann Neurol 51:330–339

    Article  PubMed  Google Scholar 

  24. Rocca MA, Mezzapesa DM, Falini A et al (2003) Evidence for axonal pathology and adaptive cortical reorganization in patients at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Neuroimage 18:847–855

    Article  PubMed  Google Scholar 

  25. Rocca MA, Gavazzi C, Mezzapesa DM et al (2003) A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage 19:1770–1777

    Article  PubMed  Google Scholar 

  26. Rocca MA, Pagani E, Ghezzi A et al (2003) Functional cortical changes in patients with MS and non-specific conventional MRI scans of the brain. Neuroimage 19:826–836

    Article  PubMed  Google Scholar 

  27. Reddy H, Narayanan S, Woolrich M et al (2002) Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability. Brain 125:2646–2657

    Article  PubMed  CAS  Google Scholar 

  28. Filippi M, Rocca MA, Mezzapesa DM et al (2004) Simple and complex movementassociated functional MRI changes in patients at presentation with clinically isolated syndromes suggestive of MS. Hum Brain Mapp 21:108–117

    Article  PubMed  Google Scholar 

  29. Rocca MA, Mezzapesa DM, Ghezzi A et al (2005) A widespread pattern of cortical activations in patients at presentation with clinically isolated symptoms is associated with evolution to definite multiple sclerosis. Am J Neuroradiol 26:1136–1139

    PubMed  Google Scholar 

  30. Pantano P, Iannetti GD, Caramia F et al (2002) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125:1607–1615

    Article  PubMed  Google Scholar 

  31. Pantano P, Mainero C, Iannetti GD et al (2002) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17:1837–1843

    Article  PubMed  Google Scholar 

  32. Rocca MA, Gallo A, Colombo B et al (2004) Pyramidal tract lesions and movementassociated cortical recruitment in patients with MS. Neuroimage 2004:23:141–147

    Article  Google Scholar 

  33. Lowe MJ, Phillips MD, Lurito JT et al (2002) Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 224:184–192

    Article  PubMed  Google Scholar 

  34. Rocca MA, Matthews PM, Caputo D et al (2002) Evidence for widespread movementassociated functional MRI changes in patients with PPMS. Neurology 58:866–872

    PubMed  CAS  Google Scholar 

  35. Rocca MA, Mezzapesa DM, Ghezzi A et al (2003) Cord damage elicits brain functional reorganization after a single episode of myelitis. Neurology 61:1078–1085

    PubMed  CAS  Google Scholar 

  36. Rocca MA, Agosta F, Mezzapesa DM et al (2004) A functional MRI study of movement-associated cortical changes in patients with Devic’s neuromyelitis optica. Neuroimage 21:1061–1068

    Article  PubMed  CAS  Google Scholar 

  37. Filippi M, Rocca MA, Mezzapesa DM et al (2004) A functional MRI study of cortical activations associated with object manipulation in patients with MS. Neuroimage 21:1147–1154

    Article  PubMed  Google Scholar 

  38. Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34:1553–1566

    Article  PubMed  Google Scholar 

  39. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  40. Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399

    Article  PubMed  Google Scholar 

  41. Trapp BD, Ransohoff R, Rudick R (1999) Axonal pathology in multiple sclerosis: relationship to neurologic disability. Curr Opin Neurol 12:295–302

    Article  PubMed  CAS  Google Scholar 

  42. Filippi M, Rocca MA, Colombo B et al (2002) Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage 15:559–567

    Article  PubMed  CAS  Google Scholar 

  43. Rocca MA, Agosta F, Colombo B et al (2007) fMRI changes in relapsing-remitting multiple sclerosis patients complaining of fatigue after IFN*b-1 a injection. Hum Brain Mapp [epub 24 Aug 2006; doi:10.1002/hbm.20279]

    Google Scholar 

  44. Filippi M, Rocca MA, Comi G (2003) The use of quantitative magnetic-resonancebased techniques to monitor the evolution of multiple sclerosis. Lancet Neurol 2:337–346

    Article  PubMed  CAS  Google Scholar 

  45. Lenzi D, Conte A, Mainero C et al (2007) Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Hum Brain Mapp [epub 1 Nov 2006; doi 10.1002/hbm.20305]

    Google Scholar 

  46. Rocca MA, Colombo B, Falini A et al (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4:618–626

    Article  PubMed  Google Scholar 

  47. Pantano P, Mainero C, Lenzi D et al (2005) A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain 128:2146–2153

    Article  PubMed  Google Scholar 

  48. Ciccarelli O, Toosy AT, Marsden JF et al (2006) Functional response to active and passive ankle movements with clinical correlations in patients with primary progressive multiple sclerosis. J Neurol 253:882–891

    Article  PubMed  CAS  Google Scholar 

  49. Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052

    Article  PubMed  Google Scholar 

  50. Rao SM, Binder JR, Bandettini PA et al (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43:2311–2318

    PubMed  CAS  Google Scholar 

  51. de Gelder B (2000) Neuroscience: more to seeing than meets the eye. Science 289:1148–1149

    Article  PubMed  Google Scholar 

  52. Rocca MA, Agosta F, Martinelli V et al (2006) The level of spinal cord involvement influences the pattern of movement-associated cortical recruitment in patients with isolated myelitis. Neuroimage 15:879–884

    Article  Google Scholar 

  53. Morgen K, Kadom N, Sawaki L et al (2004) Training-dependent plasticity in patients with multiple sclerosis. Brain 127, 2506–2517

    Article  PubMed  Google Scholar 

  54. Staffen W, Mair A, Zauner H et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125:1275–1282

    Article  PubMed  CAS  Google Scholar 

  55. Au Duong MV, Audoin B, Boulanouar K et al (2005) Altered functional connectivity related to white matter changes inside the working memory network at the very early stage of MS. J Cereb Blood Flow Metab 25:1245–1253

    Article  Google Scholar 

  56. Au Duong MV, Boulanouar K, Audoin B et al (2005) Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis. Neuroimage 24:533–538

    Article  Google Scholar 

  57. Audoin B, Ibarrola D, Ranjeva JP et al (2003) Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 20:51–58

    Article  PubMed  Google Scholar 

  58. Hillary FG, Chiaravalloti ND, Ricker JH et al (2003) An investigation of working memory rehearsal in multiple sclerosis using fMRI. J Clin Exp Neuropsychol 25:965–978

    PubMed  CAS  Google Scholar 

  59. Parry AM, Scott RB, Palace J et al (2003) Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain 126:2750–2760

    Article  PubMed  Google Scholar 

  60. Penner IK, Rausch M, Kappos L et al (2003) Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 250:461–472

    Article  PubMed  Google Scholar 

  61. Mainero C, Caramia F, Pozzilli C et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 21:858–867

    Article  PubMed  Google Scholar 

  62. Sweet LH, Rao SM, Primeau M et al (2004) Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging 14:150–157

    Article  PubMed  Google Scholar 

  63. Sweet LH, Rao SM, Primeau M et al (2006) Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Hum Brain Mapp 27:28–36

    Article  PubMed  Google Scholar 

  64. Wishart HA, Saykin AJ, McDonald BC et al (2004) Brain activation patterns associated with working memory in relapsing-remitting MS. Neurology 62:234–238

    PubMed  CAS  Google Scholar 

  65. Chiaravalloti N, Hillary FG, Ricker JH et al (2005) Cerebral activation patterns during working memory performance in multiple sclerosis using fMRI. J Clin Exp Neuropsychol 27:33–54

    Article  PubMed  Google Scholar 

  66. Cader S, Cifelli A, Abu-Omar Y et al (2006) Reduced brain functional reserve and altered functional connectivity in patients with multiple sclerosis. Brain 129:527–537

    Article  PubMed  Google Scholar 

  67. Comi G, Rovaris M, Leocani L et al (2001) Clinical and MRI assessment of brain damage in MS. Neurol Sci 22:S123–S127

    Article  PubMed  Google Scholar 

  68. Lazeron RH, Rombouts SA, Scheltens P et al (2004) An fMRI study of planning-related brain activity in patients with moderately advanced multiple sclerosis. Mult Scler 10:549–555

    Article  PubMed  Google Scholar 

  69. Audoin B, Au Duong MV, Ranjeva JP et al (2005) Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp 24:216–228

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Italia

About this chapter

Cite this chapter

Rocca, M.A., Filippi, M. (2007). Functional MRI. In: Filippi, M., Rovaris, M., Comi, G. (eds) Neurodegeneration in Multiple Sclerosis. Topics in Neuroscience. Springer, Milano. https://doi.org/10.1007/978-88-470-0391-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0391-0_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0390-3

  • Online ISBN: 978-88-470-0391-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics