Skip to main content

Molecular Modifications Induced by Physical Exercise: A Significant Role in Disease Prevention

  • Chapter
Role of Physical Exercise in Preventing Disease and Improving the Quality of Life

Abstract

The pathogenesis of metabolic syndrome is at present only partly understood; however, a sedentary lifestyle, an unhealthy diet, being overweight or obese, and still largely unknown genetic factors clearly interact to cause it [1,2]. People suffering from metabolic syndrome share three or more of the following characteristics: augmented waist circumference, elevated plasma triglycerides, low levels of high-density lipoprotein, increased waist circumference, glucose intolerance, and hypertension. Although several studies point to insulin resistance as the principal cause in the development of metabolic syndrome and cardiovascular disease, a growing body of evidence highlights the importance of aerobic capacity as a predictor of metabolic syndrome and cardiovascular diseases [35]. Aerobic capacity, how well an organism can metabolize oxygen and generate energy, depends on the efficiency of oxygen delivery to tissues and the subsequent effectiveness of respiration carried out by mitochondria in those tissues, especially in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laaksonen DE et al (2004) Epidemiology and treatment of the metabolic syndrome. Ann Med 36:332–346

    Article  PubMed  CAS  Google Scholar 

  2. Teran-Garcia M, Bouchard C (2007) Genetics of the metabolic syndrome. Appl Physiol Nutr Metab 32:89–114

    Article  PubMed  CAS  Google Scholar 

  3. Petersen KF et al (2003) Mitochondrial dysfunction in the elderly: Possible role in insulin resistance. Science 300:1140–1142

    Article  PubMed  CAS  Google Scholar 

  4. Petersen KF et al (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–671

    Article  PubMed  CAS  Google Scholar 

  5. Wisloff U et al (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307:418–420

    Article  PubMed  CAS  Google Scholar 

  6. Chakravarthy MV, Booth FW (2004) Eating, exercise, and “thrifty” genotypes: Connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 96:3–10

    Article  PubMed  Google Scholar 

  7. Kelley DE et al (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  PubMed  CAS  Google Scholar 

  8. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  9. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  10. Jacob S et al (1999) Association of increased intramyocellularlipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes 48:1113–1119

    Article  PubMed  CAS  Google Scholar 

  11. Kelley DE, Goodpaster BH, Storlien L (2002) Muscle triglyceride and insulin resistance. Annu Rev Nutr 22:325–346

    Article  PubMed  CAS  Google Scholar 

  12. Lillioja S et al (1988) Impaired glucose tolerance as a disorder of insulin action. Longitudinal and cross-sectional studies in Pima Indians. N Engl J Med 318:1217–1225

    Article  PubMed  CAS  Google Scholar 

  13. Lillioja S et al (1993) Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med 329:1988–1992

    Article  PubMed  CAS  Google Scholar 

  14. Azen SP et al (1998) TRIPOD (TRoglitazone In the Prevention Of Diabetes): A randomized, placebo-controlled trial of troglitazone in women with prior gestational diabetes mellitus. Control Clin Trials 19:217–231

    Article  PubMed  CAS  Google Scholar 

  15. Kelley DE et al (2000) Subdivisions of subcutaneous abdominal adipose tissue and insulin resistance. Am J Physiol Endocrinol Metab 278:E941–E948

    PubMed  CAS  Google Scholar 

  16. Patti ME et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci 100:8466–8471

    Article  PubMed  CAS  Google Scholar 

  17. Shulman GI et al (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228

    Article  PubMed  CAS  Google Scholar 

  18. Rothman DL et al (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci 92:983–987

    Article  PubMed  CAS  Google Scholar 

  19. Cline GW et al (1999) Impaired glucose transport as a cause of decreased insulinstimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341:240–246

    Article  PubMed  CAS  Google Scholar 

  20. Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23

    Article  PubMed  CAS  Google Scholar 

  21. Szczepaniak LS et al (1999) Measurement of intracellular triglyceride stores by H spectroscopy: Validation in vivo. Am J Physiol 276(5Pt1):E977–E989

    PubMed  CAS  Google Scholar 

  22. Randle PJ et al (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789

    Article  PubMed  CAS  Google Scholar 

  23. Roden M et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865

    PubMed  CAS  Google Scholar 

  24. Petersen KF et al (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381–386

    Article  PubMed  CAS  Google Scholar 

  25. Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulindependent muscle glucose transport or phosphorylation activity in non-insulindependent diabetes mellitus. J Clin Invest 89:1069–1075

    PubMed  CAS  Google Scholar 

  26. Dresner A et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259

    PubMed  CAS  Google Scholar 

  27. Garvey WT et al (1992) Gene expression of GLUT4 in skeletal muscle from insulinresistant patients with obesity, IGT, GDM, and NIDDM. Diabetes 41:465–475

    Article  PubMed  CAS  Google Scholar 

  28. Pedersen O et al (1990) Evidence against altered expression of GLUT1 or GLUT4 in skeletal muscle of patients with obesity or NIDDM. Diabetes 39:865–870

    Article  PubMed  CAS  Google Scholar 

  29. Kelley DE et al (1996) The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 97:2705–2713

    PubMed  CAS  Google Scholar 

  30. Zierath JR et al (1996) Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia 39:1180–1189

    Article  PubMed  CAS  Google Scholar 

  31. Garvey WT et al (1998) Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. J Clin Invest 101:2377–2386

    Article  PubMed  CAS  Google Scholar 

  32. Griffin ME et al (1999) Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270–1274

    Article  PubMed  CAS  Google Scholar 

  33. Yin MJ, Yamamoto Y, Gaynor RB (1998) The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 396:77–80

    Article  PubMed  CAS  Google Scholar 

  34. Yuan M et al (2001) Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293:1673–1677

    Article  PubMed  CAS  Google Scholar 

  35. Kim JK et al (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108:437–446

    Article  PubMed  CAS  Google Scholar 

  36. Hundal RS et al (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest 109:1321–1326

    Article  PubMed  CAS  Google Scholar 

  37. Yu C et al (2002) Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 277:50230–50236

    Article  PubMed  CAS  Google Scholar 

  38. Itani SI et al (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51:2005–2011

    Article  PubMed  CAS  Google Scholar 

  39. Hotamisligil GS et al (1996) IRS-1-mediated inhibition of insulin receptortyrosine kinase activity in TNF-alpha-and obesity-induced insulin resistance. Science 271:665–668

    Article  PubMed  CAS  Google Scholar 

  40. Shulman GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106:171–176

    PubMed  CAS  Google Scholar 

  41. Perseghin G et al (1996) Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med 335:1357–1362

    Article  PubMed  CAS  Google Scholar 

  42. Moitra J et al (1998) Life without white fat: A transgenic mouse. Genes Dev 12:3168–3181

    PubMed  CAS  Google Scholar 

  43. Michikawa Y et al (1999) Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286:774–779

    Article  PubMed  CAS  Google Scholar 

  44. Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273

    Article  PubMed  CAS  Google Scholar 

  45. Simoneau JA et al (1995) Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. Faseb J 9:273–278

    PubMed  CAS  Google Scholar 

  46. He J, Goodpaster BH, Kelley DE (2004) Effects of weight loss and physical activity on muscle lipid content and droplet size. Obes Res 12:761–769

    PubMed  Google Scholar 

  47. Short KR et al (2003) Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes 52:1888–1896

    Article  PubMed  CAS  Google Scholar 

  48. Menshikova EV et al (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534–540

    PubMed  Google Scholar 

  49. Heilbronn LK et al (2007) Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92:1467–1473

    Article  PubMed  CAS  Google Scholar 

  50. Short KR et al (2005) Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci 102:5618–5623

    Article  PubMed  CAS  Google Scholar 

  51. Hunter GR et al (2002) Age is independently related to muscle metabolic capacity in premenopausal women. J Appl Physiol 93:70–76

    PubMed  Google Scholar 

  52. Carmeli E, Coleman R, Reznick AZ (2002) The biochemistry of aging muscle. Exp Gerontol 37:477–489

    Article  PubMed  CAS  Google Scholar 

  53. McArdle A, Vasilaki A, Jackson M (2002) Exercise and skeletal muscle ageing: Cellular and molecular mechanisms. Ageing Res Rev 1:79–93

    Article  PubMed  CAS  Google Scholar 

  54. Short KR, Nair KS (1999) Mechanisms of sarcopenia of aging. J Endocrinol Invest 22(5 Suppl):95–105

    PubMed  CAS  Google Scholar 

  55. Rooyackers OE et al (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci 93:15364–15369

    Article  PubMed  CAS  Google Scholar 

  56. Balagopal P et al (1997) Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 273(4 Pt 1):E790–E800

    PubMed  CAS  Google Scholar 

  57. Adhihetty PJ et al (2003) Plasticity of skeletal muscle mitochondria in response to contractile activity. Exp Physiol 88:99–107

    Article  PubMed  CAS  Google Scholar 

  58. Melov S et al (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23:4122–4126

    Article  PubMed  CAS  Google Scholar 

  59. Lee CM, Weindruch R, Aiken JM (1997) Age-associated alterations of the mitochondrial genome. Free Radic Biol Med 22:1259–1269

    Article  PubMed  CAS  Google Scholar 

  60. Barazzoni R, Short KR, Nair KS (2000) Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart. J Biol Chem 275:3343–3347

    Article  PubMed  CAS  Google Scholar 

  61. Welle S et al (2003) Reduced amount of mitochondrial DNA in aged human muscle. J Appl Physiol 94:1479–1484

    PubMed  CAS  Google Scholar 

  62. Boffoli D et al (1994) Decline with age of the respiratory chain activity in human skeletal muscle. Biochim Biophys Acta 1226:73–82

    PubMed  CAS  Google Scholar 

  63. Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: Possible factor in ageing. Lancet 1:637–639

    Article  PubMed  CAS  Google Scholar 

  64. Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  65. Trifunovic A et al (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423

    Article  PubMed  CAS  Google Scholar 

  66. Bassett CN, Montine TJ (2003) Lipoproteins and lipid peroxidation in Alzheimer’s disease. J Nutr Health Aging 7:24–29

    PubMed  CAS  Google Scholar 

  67. Ritov VB et al (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14

    Article  PubMed  CAS  Google Scholar 

  68. Hood DA (2001) Invited review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157

    PubMed  CAS  Google Scholar 

  69. Koves TR et al (2005) Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism. Am J Physiol Cell Physiol 288:C1074–C1082

    Article  PubMed  CAS  Google Scholar 

  70. Hoppeler H, Fluck M (2003) Plasticity of skeletal muscle mitochondria: Structure and function. Med Sci Sports Exerc 35:95–104

    Article  PubMed  CAS  Google Scholar 

  71. Tonkonogi M, Harris B, Sahlin K (1998) Mitochondrial oxidative function in human saponin-skinned muscle fibres: Effects of prolonged exercise. J Physiol 510(Pt 1):279–286

    Article  PubMed  CAS  Google Scholar 

  72. Zoll J, et al (2002) Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 543(Pt l):191–200

    Article  PubMed  CAS  Google Scholar 

  73. Hood DA et al (2006) Coordination of metabolic plasticity in skeletal muscle. J Exp Biol 209(Pt 12):2265–2275

    Article  PubMed  CAS  Google Scholar 

  74. Irrcher I et al (2003) Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med 33:783–793

    Article  PubMed  Google Scholar 

  75. Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): Transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  PubMed  CAS  Google Scholar 

  76. Baar K (2004) Involvement of PPAR gamma co-activator-1, nuclear respiratoryfactors 1 and 2, and PPAR alpha in the adaptive response to endurance exercise. Proc Nutr Soc 63:269–273

    Article  PubMed  CAS  Google Scholar 

  77. Gleyzer N, Vercauteren K, Scarpulla RC (2005) Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol 25:1354–1366

    Article  PubMed  CAS  Google Scholar 

  78. Kang D, Hamasaki N (2005) Mitochondrial transcription factor A in the maintenance of mitochondrial DNA: Overview of its multiple roles. Ann N Y Acad Sci 042:101–108

    Article  CAS  Google Scholar 

  79. Hsieh YC et al (2006) Flutamide restores cardiac function after trauma-hemorrhage via an estrogen-dependent pathway through upregulation of PGC-1. Am J Physiol Heart Circ Physiol 290:H416–H423

    Article  PubMed  CAS  Google Scholar 

  80. Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 68:1–110

    Google Scholar 

  81. Simoneau JA et al (1986) Repeatability of fibre type and enzyme activity measurements in human skeletal muscle. Clin Physiol 6:347–356

    PubMed  CAS  Google Scholar 

  82. Hayot M et al (2005) Skeletal muscle microbiopsy: A validation study of a minimally invasive technique. Eur Respir J 25:431–440

    Article  PubMed  CAS  Google Scholar 

  83. Fluck M et al (2005) Transcriptional profiling of tissue plasticity: Role of shifts in gene expression and technical limitations. J Appl Physiol 99:397–413

    Article  PubMed  CAS  Google Scholar 

  84. Welker JA et al (2000) The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer 89:2677–2686

    Article  PubMed  CAS  Google Scholar 

  85. Cote AM et al (1992) Needle muscle biopsy with the automatic biopsy instrument. Neurology 42:2212–2213

    PubMed  CAS  Google Scholar 

  86. Magistris MR et al (1998) Needle muscle biopsy in the investigation of neuromuscular disorders. Muscle Nerve 21:194–200

    Article  PubMed  CAS  Google Scholar 

  87. Vescovo G et al (1998) Improved exercise tolerance after losartan and enalapril in heart failure: Correlation with changes in skeletal muscle myosin heavy chain composition. Circulation 98:1742–1749

    PubMed  CAS  Google Scholar 

  88. Vescovo G et al (1996) Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: Differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 76:337–343

    Article  PubMed  CAS  Google Scholar 

  89. Guescini M et al (2007) Fine needle aspiration coupled with real-time PCR: A painless methodology to study adaptive functional changes in skeletal muscle. Nutr Metab Cardiovasc Dis (epub ahead of print)

    Google Scholar 

  90. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370

    Article  PubMed  CAS  Google Scholar 

  91. Norrbom J et al (2004) PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96:189–194

    Article  PubMed  CAS  Google Scholar 

  92. Plomgaard P et al (2006) The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles. J Appl Physiol 101:817–825

    Article  PubMed  CAS  Google Scholar 

  93. Russell AP et al (2003) Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881

    Article  PubMed  CAS  Google Scholar 

  94. Howald H et al (1985) Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflugers Arch 403:369–376

    Article  PubMed  CAS  Google Scholar 

  95. Garnier A et al (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. Faseb J 19:43–52

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Guescini, M., Stocchi, L., Di Loreto, C., Fatone, C., De Feo, P., Stocchi, V. (2007). Molecular Modifications Induced by Physical Exercise: A Significant Role in Disease Prevention. In: Stocchi, V., De Feo, P., Hood, D.A. (eds) Role of Physical Exercise in Preventing Disease and Improving the Quality of Life. Springer, Milano. https://doi.org/10.1007/978-88-470-0376-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0376-7_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0375-0

  • Online ISBN: 978-88-470-0376-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics