Skip to main content

QCD at the Large Hadron Collider—Higgs Searches and Some Non-SUSY Extensions Beyond the SM

  • Chapter
Physics at the Large Hadron Collider
  • 811 Accesses

Abstract

We present a brief overview of the physics potential of the Large Hadron Collider (LHC) and the role of quantum chromody- namics (QCD) in predicting various observables at the LHC with unprecedented accuracy. We have studied the production of Standard Model (SM) Higgs boson through gluon fusion channel and various signals of physics beyond the Standard Model (BSM) restricted to non-supersymmetric scenarios. These are models with large extra-dimensions such as ADD and Randall- Sundrum models and also physics senario resulting from scale/conformal invariant sector, namely unparticle physics. We have presented QCD effects to several of the observables in these models through higher order perturbative QCD corrections and parton distribution functions. We have demonstrated how the these corrections reduce the scale ambiguities coming from renormalisation and factorisation. Our study shows that the precise and unambiguous predictions are possible for various BSM studies at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Europhysics Conference On High Energy Physics (EPS-HEP2007) 19–25 Jul 2007, Manchester, England

    Google Scholar 

  2. A. Djouadi, Phys. Rept. 457 (2008) 1 [arXiv:hep-ph/0503172]; R. Harlander, J. Phys. G 35 (2008) 033001.

    Article  ADS  Google Scholar 

  3. S. P. Martin, arXiv:hep-ph/9709356; A. Djouadi, Phys. Rept. 459 (2008) 1 [arXiv:hep-ph/0503173]

    Article  Google Scholar 

  4. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998) 257 [arXiv:hep-ph/9804398]

    Article  ADS  Google Scholar 

  5. L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 3370 [arXiv:hep-ph/9905221]; W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83 (1999) 4922.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. H. Georgi, Phys. Rev. Lett. 98 (2007) 221601 [arXiv:hep-ph/0703260].

    Article  ADS  Google Scholar 

  7. T. Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods, World Scientific Publishing Company, August 1998.

    Google Scholar 

  8. G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press, September 1993.

    Google Scholar 

  9. S. Moch, J. A. M. Vermaseren and A. Vogt, Nucl. Phys. B 688 (2004) 101 [arXiv:hep-ph/0403192]; A. Vogt, S. Moch and J. A. M. Vermaseren, Nucl. Phys. B 691 (2004) 129 [arXiv:hep-ph/0404111].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977); H. M. Georgi, S. L. Glashow, M. E. Machacek and D. V. Nanopoulos, Phys. Rev. Lett. 40, 692 (1978); J. R. Ellis, M. K. Gaillard, D. V. Nanopoulos and C. T. Sachrajda, Phys. Lett. B 83, 339 (1979).

    Article  ADS  Google Scholar 

  11. S. Dawson, Nucl. Phys. B 359, 283 (1991); A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B 264, 440 (1991); D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett. 70, 1372 (1993); M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453, 17 (1995) [arXiv:hep-ph/9504378].

    Article  ADS  Google Scholar 

  12. R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002) [arXiv:hep-ph/0201206]; C. Anasta-siou and K. Melnikov, Nucl. Phys. B 646, 220 (2002) [arXiv:hep-ph/0207004]; V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003) [arXiv:hep-ph/0302135].

    Article  ADS  Google Scholar 

  13. V. Ravindran, Nucl. Phys. B 752, 173 (2006) [arXiv:hep-ph/0603041].

    Article  MATH  ADS  Google Scholar 

  14. S. Moch, J. A. M. Vermaseren and A. Vogt, Phys. Lett. B 625 (2005) 245 [arXiv:hep-ph/0508055].

    Article  ADS  Google Scholar 

  15. V. Ravindran, J. Smith and W. L. van Neerven, Nucl. Phys. B 767 (2007) 100 [arXiv:hep-ph/0608308].

    Article  ADS  Google Scholar 

  16. T. Appelquist, H. C. Cheng and B. A. Dobrescu, Phys. Rev. D64 (2001) 035002.

    ADS  Google Scholar 

  17. C. D. Hoyle et. al, Phys. Rev. D70 (2004) 042004.

    ADS  Google Scholar 

  18. G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B544 (1999) 3.

    Article  ADS  Google Scholar 

  19. T. Han, J. D. Lykken and R-J. Zhang, Phys. Rev. D59 (1999) 105006.

    MathSciNet  Google Scholar 

  20. W.D. Goldberger and M.B. Wise, Phys. Rev. Lett. 83 (1999) 4922; Phys.Lett. B475 (2000) 275.

    Article  ADS  Google Scholar 

  21. Prakash Mathews, V. Ravindran, K. Sridhar and W.L. van Neerven Nucl. Phys. B713 (2005) 333.

    Article  MATH  ADS  Google Scholar 

  22. Prakash Mathews, V. Ravindran and K. Sridhar, JHEP 0510 (2005) 031.

    Article  ADS  Google Scholar 

  23. Prakash Mathews, V. Ravindran, Nucl. Phys. B753 (2006) 1.

    Article  MATH  ADS  Google Scholar 

  24. H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Phys. Rev. Lett 84 (2000) 2080; H. Davoudiasl, J.L. Hewett and T.G. Rizzo ibid. Phys. Rev. D63 (2001) 075004.

    Article  ADS  Google Scholar 

  25. S. Alekhin Phys. Rev. D 68 (2003) 014002.

    Article  ADS  Google Scholar 

  26. J. Pumplin et. al., JHEP 0207 (2002) 012.

    Article  ADS  Google Scholar 

  27. A.D. Martin et. al., Eur. Phys. J. C 23 (2002) 73.

    Article  ADS  Google Scholar 

  28. M. C. Kumar, Prakash Mathews and V. Ravindran, Eur. Phys. J. C49 (2007) 599.

    Article  ADS  Google Scholar 

  29. S. I. Alekhin, Phys. Rev.D 63 (2001) 094022; CTEQ Collaboration: J. Pumplin et al., JHEP 0207 (2002) 012.

    Article  ADS  Google Scholar 

  30. A.D. Martin et. al., Eur. Phys. J. C28 (2003) 455.

    Article  ADS  Google Scholar 

  31. H. Georgi, Phys. Lett. B 650 (2007) 275.

    Article  ADS  Google Scholar 

  32. T. Banks and A. Zaks, Nucl. Phys. B 196, (1982) 189.

    Article  ADS  Google Scholar 

  33. T. van Ritbergen, J. A. M. Vermaseren, S. A. Larin Phys. Lett. B400 (1997) 379.

    Google Scholar 

  34. M. A. Stephanov, Phys. Rev. D 76 (2007) 035008.

    Article  ADS  Google Scholar 

  35. P. J. Fox et al., Phys. Rev. D 76 (2007) 075004; A. Delgado et al., JHEP 0710 (2007) 094; M. Bander et al., Phys. Rev. D 76 (2007) 115002.

    Article  ADS  Google Scholar 

  36. K. Cheung, W. Y. Keung and T. C. Yuan, Phys. Rev. Lett. 99 (2007) 051803.

    Article  ADS  Google Scholar 

  37. P. Mathews and V. Ravindran, Phys. Lett. B 657 (2007) 198.

    ADS  Google Scholar 

  38. M. C. Kumar et al., Phys. Rev. D 77 (2008) 055013.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Indian National Science Academy, New Delhi

About this chapter

Cite this chapter

Mathews, P., Ravindran, V. (2009). QCD at the Large Hadron Collider—Higgs Searches and Some Non-SUSY Extensions Beyond the SM. In: Datta, A., et al. Physics at the Large Hadron Collider. Springer, New Delhi. https://doi.org/10.1007/978-81-8489-295-6_7

Download citation

Publish with us

Policies and ethics