Skip to main content

Concurrent Stresses Are Perceived as New State of Stress by the Plants: Overview of Impact of Abiotic and Biotic Stress Combinations

  • Chapter
  • First Online:
Plant Tolerance to Individual and Concurrent Stresses

Abstract

Crop plants under natural conditions often encounter abiotic and biotic stresses either individually or in combination, single or multiple times in their life cycle. During their concurrence, different stressors interact with each other over the plant interface leading to altered plant responses. Initial stressor can modulate plant physiology and thereby influences plant response towards another stressor. Consequent to the stress interaction, plants encountering concurrent stress show different responses in comparison to the plants exposed to the individual stresses. Additionally, plant defence responses are somewhat skewed towards one stressor during concurrent occurrence of stresses. Such different responses are the cognate ‘net effect’ of combined stress felt by the plant. The net effect exhibited by plants under combined stress is unique to each stress combination. Thus, in lieu of the combined stress responses, which are different from the individual stress responses, the combined stress has been proposed as a new state of stress. Plant responses towards this new state are not just dictated by either of the individual stresses alone but by more complex interaction. In this chapter, we present an overview of the combined stresses with emphasis on drought and bacterial stressors and discuss the stress interaction effect and net effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achuo EA, Prinsen E, Höfte M (2006) Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55:178–186

    Article  CAS  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres PG (1977) Effects of leaf water potential on sporulation of Erysiphe pisi (pea mildew). Trans Br Mycol Soc 68:97–100

    Article  Google Scholar 

  • Ayres PG (1978) Water relations of diseased plants. In: Kozlowski TT (eds) Water deficits and plant growth, vol V. Academic Press, London, pp 1–60

    Google Scholar 

  • Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587

    Article  CAS  PubMed  Google Scholar 

  • Beattie GA (2011) Water relations in the interaction of foliar bacterial pathogens with plants. Annu Rev Phytopathol 49:533–555

    Article  CAS  PubMed  Google Scholar 

  • Bhatti MA, Kraft JM (1992) Influence of soil moisture on root rot and wilt of chickpea. Plant Dis 76:1259–1262

    Article  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:17–49

    Article  Google Scholar 

  • Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1340–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Choi H-K, Iandolino A, Goes da Silva F, Cook D (2013). Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant-Microbe Interact 26:643–657

    Google Scholar 

  • Clover GRG, Smith HG, Azam-Ali SN, Jaggard KW (1999) The effects of drought on sugar beet growth in isolation and in combination with beet yellows virus infection. J Agric Sci (Camb) 133:251–261

    Article  Google Scholar 

  • Cook AA, Stall RE (1977) Effects of watersoaking on response to Xanthomonas vesicatoria in pepper leaves. Phytopathol. 67:1101–1103

    Article  Google Scholar 

  • Córdoba AR, Taleisnik E, Brunotto M, Racca R (1991) Mitigation of tomato spotted wilt virus infection and symptom expression by water stress. J Phytopathol 133:255–263

    Article  Google Scholar 

  • Daugherty M, Lopes JS, Almeida RP (2010) Strain-specific alfalfa water stress induced by Xylella fastidiosa. Eur J Plant Pathol 127:333–340

    Article  Google Scholar 

  • Desprez-Loustau ML, Robin C, Reynaud G, Deque M, Badeau V, Piou D, Hussone C, MarçaiseB (2007) Simulating the effects of a climate-change scenario on the geographical range and activity of forest-pathogenic fungi. Can J Plant Pathol 29:101–120

    Google Scholar 

  • Dong HP, Yu H, Bao Z, Dong H (2005) The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221:313–327

    Article  CAS  PubMed  Google Scholar 

  • Dossa GS, Torres R, Henry A, Oliva R, Maiss E, Cruz CV, Wydra K (2016) Rice response to simultaneous bacterial blight and drought stress during compatible and incompatible interactions. Eur J Plant Pathol. doi:10.1007/s10658-016-0985-8

    Google Scholar 

  • Edmunds LK (1964) Combined relation of plant maturity, temperature and soil moisture to charcoal stalk rot development in grain sorghum. Phytopathology 54:514–517

    Google Scholar 

  • Elad Y, Pertot I (2014) Climate change impacts on plant pathogens and plant diseases. J Crop Improv 28:99–139

    Article  CAS  Google Scholar 

  • Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC (2009) The role of water stress in plant disease resistance and the impact of water stress on the global transcriptome and survival mechanisms of the phytopathogen Pseudomonas syringae. PhD thesis, Iowa State University, 114 pp; 3355217

    Google Scholar 

  • Freeman BC, Beattie GA (2009) Bacterial growth restriction during host resistance to Pseudomonas syringae is associated with leaf water loss and localized cessation of vascular activity in Arabidopsis thaliana. Mol Plant-Microbe Interact 22:857–867

    Article  CAS  PubMed  Google Scholar 

  • Goel AK, Lundberg D, Torres MA, Matthews R, Akimoto-Tomiyama C, Farmer L, Dangl JL, Grant SR (2008) The Pseudomonas syringae type III effector HopAM1 enhances virulence on water stressed plants. Mol Plant-Microbe Interact 21:361–370

    Article  CAS  PubMed  Google Scholar 

  • Goto K (1985) The relative importance of precipitation and sugar content in potato peel for the detection of the incidence of common scab (Streptomyces scabies). Soil Sci Plant Nutr 31:419–425

    Article  CAS  Google Scholar 

  • Gudesblat GE, Torres PS, Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149:1017–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Dixit SK, Senthil-Kumar M (2016a) Drought stress predominantly endures Arabidopsis thaliana to Pseudomonas syringae infection. Front Plant Sci 7:808. doi:10.3389/fpls.2016.00808

    PubMed  PubMed Central  Google Scholar 

  • Gupta A, Sarkar AK, Senthil-Kumar M (2016b) Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress. Front Plant Sci 7:686

    PubMed  PubMed Central  Google Scholar 

  • Hanso M, Drenkhan R (2009) Diplodia pinea is a new pathogen on Austrian pine (Pinus nigra) in Estonia. New Dis Rep 19:14

    Google Scholar 

  • Hatmi S, Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Baillieul F, Eullaffroy P, Clément C, Ferchichi A, Aziz A (2014) Drought stress tolerance in grapevine involves activation of polyamine oxidation contributing to improved immune response and low susceptibility to Botrytis cinerea. J Exp Bot 66:775–787

    Article  PubMed  Google Scholar 

  • Hirano SS, Upper CD (1983) Ecology and epidemiology of foliar bacterial plant pathogens. Annu Rev Phytopathol 21:243–269

    Article  Google Scholar 

  • Hirano SS, Upper CD (1990) Population biology and epidemiology of Pseudomonas syringae. Annu Rev Phytopathol 28:155–177

    Article  Google Scholar 

  • Hutchison ML, Johnstone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol Mol Plant Pathol 42:373–384

    Article  CAS  Google Scholar 

  • Ijaz S, Sadaqat HA, Khan AN (2013) A review of the impact of charcoal rot (Macrophomina phaseolina) on sunflower. J Agric Sci 151:222–227

    Article  Google Scholar 

  • Janda T, Cséplõ M, Németh CS, Vida GY, Pogány M, Szalai G, Veisz O (2008) Combined effect of water stress and infection with the necrotrophic fungal pathogen Drechslera tritici-repentis on growth and antioxidant activity in wheat. Cereal Res Commun 36:53–64

    Article  CAS  Google Scholar 

  • Keith LM, Bender CL (1999) AlgT (sigma22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae. J Bacteriol 181:7176–7184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr A (1964) The influence of soil moisture on infection of peas by Pythium ultimum. Aust J Biol Sci 17:676–685

    Article  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RGF, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular cross talk. Front Plant Sci 5:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Koga H, Dohi K, Mori M (2004) Abscisic acid and low temperatures suppress the whole plant-specific resistance reaction of rice plants to the infection of Magnaporthe grisea. Physiol Mol Plant Pathol 65:3–9

    Article  CAS  Google Scholar 

  • Leben C, Schroth MN, Hildebrand DC (1970) Colonization and movement of Pseudomonas syringae on healthy bean seedlings. Phytopathology 60:677–680

    Article  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayek-Perez N, Garcia-Espinosa R, Lopez-Castaneda C, Acosta-Gallegos JA, Simpson J (2002) Water relations, histopathology and growth of common bean (Phaseolus vulgaris L.) during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol 60:185–195

    Article  Google Scholar 

  • McElrone AJ, Sherald JL, Forseth IN (2001) Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. Plant Dis 85:1160–1164

    Article  Google Scholar 

  • McElrone AJ, Sherald JL, Forseth IN (2003) Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. J Exp Bot 54:419–430

    Article  CAS  PubMed  Google Scholar 

  • Melotto M, Underwood W, He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 46:101–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    Article  CAS  Google Scholar 

  • Monier JM, Lindow SE (2003) Differential survival of solitary and aggregated bacterial cells promotes aggregate formation on leaf surfaces. Proc Natl Acad Sci USA 100:15977–15982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh H-S, Collmer A (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J 44:348–359

    Article  CAS  PubMed  Google Scholar 

  • Ou X, Gan Y, Chen P, Qiu M, Jiang K, Wang G (2014) Stomata prioritize their responses to multiple biotic and abiotic signal inputs. PLoS One 9(7):e101587

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierson LS 3rd, Wood DW, Pierson EA (1998) Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36:207–225

    Article  CAS  PubMed  Google Scholar 

  • Prasch CM, Sonnewald U (2013a) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasch CM, Sonnewald U (2013b) In silico selection of Arabidopsis thaliana ecotypes with enhanced stress tolerance. Plant Signal Behav 8(11):e26364

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasch CM, Sonnewald U (2015) Signaling events in plants: stress factors in combination change the picture. Environ Exp Bot 114:4–14

    Article  CAS  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS (2013) Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci 14:9497–9513

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S, Drübert C, Polle A, Lipka V, Teichmann T (2012) Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7-dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24:3823–3837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherwood P, Villari C, Capretti P, Bonello P (2015) Mechanisms of induced susceptibility to Diplodia tip blight in drought-stressed Austrian pine. Tree Physiol 35:549–562

    Article  PubMed  Google Scholar 

  • Siddiqui MQ (1980) Some effects of rust infection and moisture stress on growth, diffusive resistance and distribution pattern of labelled assimilates in sunflower. Aust J Agric Res 31:719–726

    Article  CAS  Google Scholar 

  • Singh S, Koehler B, Fett WF (1992) Effect of osmolarity and dehydration on alginate production by fluorescent pseudomonads. Curr Microbiol 25:335–339

    Article  CAS  Google Scholar 

  • Sinha R, Gupta A, Senthil-Kumar M (2016) Understanding the impact of drought on foliar and xylem invading bacterial pathogen stress in chickpea. Front Plant Sci 7:902. doi:10.3389/fpls.2016.00902

    PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E (2014) Mittler R Tansley review Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Takahashi T, Doke N (1984) A role of extracellular polysaccharides of Xanthomonas campestris pv. cirri in bacterial adhesion to citrus leaf tissues in preinfectious stage. Jpn J Phytopathol 50:565–573

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Wilson HA, Lilly VG, Leach JG (1965) Bacterial polysaccharides IV. Longevity of Xanthomonas phaseoli and Serratia marcescens in bacterial exudates. Phytopathology 55:1135–1138

    CAS  PubMed  Google Scholar 

  • Yadeta KAJ, Thomma BP (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97. doi:10.3389/fpls.2013.00097

    PubMed  PubMed Central  Google Scholar 

  • Yáñez-López R, Torres-Pacheco I, Guevara-González RG, Hernández-Zul MI, Quijano-Carranza JA, Rico-García E (2012) The effect of climate change on plant diseases. Afr J Biotechnol 11:2417–2428

    Article  Google Scholar 

  • Yu J, Penaloza-Vazquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Combined stress tolerance-related projects at MS-K Lab are supported by the National Institute of Plant Genome Research core funding, DBT-Ramalingaswami re-entry fellowship grant (BT/RLF/re- entry/23/2012) and DBT-innovative young biotechnologist award. AG acknowledges the SERB-National Post-Doctoral Fellowship (N-PDF/2015/000116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthappa Senthil-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Gupta, A., Senthil-Kumar, M. (2017). Concurrent Stresses Are Perceived as New State of Stress by the Plants: Overview of Impact of Abiotic and Biotic Stress Combinations. In: Senthil-Kumar, M. (eds) Plant Tolerance to Individual and Concurrent Stresses. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3706-8_1

Download citation

Publish with us

Policies and ethics