Skip to main content

Molecular Genetic and Genomic Analyses of Zebrafish Circadian Rhythmicity

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Evolving from long-term adaptation of life to the cyclic physical environment of the Earth, the circadian clock as endogenous and self-sustained time-keeping mechanisms plays modulatory roles in various fundamental life processes from molecular, biochemical, cellular, physiological, to behavioral levels. Circadian dysrhythmias lead to malfunctions of the body and numerous diseases. The zebrafish (Danio rerio) as an important animal model has recently become attractive for investigating regulatory mechanisms of vertebrate circadian clocks. In this chapter, we attempted to summarize the latest progresses of utilizing mutational analysis, transgenic technique, and transcriptome tools to delineate molecular genetic and genomic mechanisms underlying zebrafish circadian rhythmicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ripperger JA, Jud C, Albrecht U (2011) The daily rhythm of mice. FEBS Lett 585:1384–1392

    Article  CAS  PubMed  Google Scholar 

  2. Toyama R, Chen X, Jhawar N, Aamar E, Epstein J, Reany N, Alon S, Gothilf Y, Klein DC, Dawid IB (2009) Transcriptome analysis of the zebrafish pineal gland. Dev Dyn 238:1813–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vatine G, Vallone D, Gothilf Y, Foulkes NS (2011) It’s time to swim! Zebrafish and the circadian clock. FEBS Lett 585:1485–1494

    Article  CAS  PubMed  Google Scholar 

  4. Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR, Wagers AJ, Zon LI (2013) A zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly JS, Larhammar D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

    Article  CAS  PubMed  Google Scholar 

  6. Wang MY, Huang GD, Wang H (2012) Advances in the zebrafish circadian clock mechanisms. Yi Chuan 34:1133–1143

    PubMed  Google Scholar 

  7. Liu C, Hu J, Qu C, Wang L, Huang G, Niu P, Zhong Z, Hong F, Wang G, Postlethwait JH, Wang H (2015) Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes. Sci Rep 5:8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang H (2008) Comparative analysis of teleost fish genomes reveals preservation of different ancient clock duplicates in different fishes. Mar Genomics 1:69–78

    Article  PubMed  Google Scholar 

  9. Wang H (2009) Comparative genomic analysis of teleost fish bmal genes. Genetica 136:149–161

    Article  CAS  PubMed  Google Scholar 

  10. Wang H (2008) Comparative analysis of period genes in teleost fish genomes. J Mol Evol 67:29–40

    Article  CAS  PubMed  Google Scholar 

  11. Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA, Klein DC (1999) Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140:4895–4903

    CAS  PubMed  Google Scholar 

  12. Vuilleumier R, Besseau L, Boeuf G, Piparelli A, Gothilf Y, Gehring WG, Klein DC, Falcon J (2006) Starting the zebrafish pineal circadian clock with a single photic transition. Endocrinology 147:2273–2279

    Article  CAS  PubMed  Google Scholar 

  13. Falcon J, Besseau L, Sauzet S, Fuentes M, Boeuf G (2007) Melatonin and neuroendocrine regulations in fish. J Soc Biol 201:21–29

    Article  CAS  PubMed  Google Scholar 

  14. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC (2001) Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105:683–694

    Article  CAS  PubMed  Google Scholar 

  15. Peschel N, Helfrich-Forster C (2011) Setting the clock – by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett 585:1435–1442

    Article  CAS  PubMed  Google Scholar 

  16. Hurd MW, Debruyne J, Straume M, Cahill GM (1998) Circadian rhythms of locomotor activity in zebrafish. Physiol Behav 65:465–472

    Article  CAS  PubMed  Google Scholar 

  17. Cahill GM, Hurd MW, Batchelor MM (1998) Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 9:3445–3449

    Article  CAS  PubMed  Google Scholar 

  18. Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H (2015) Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 35:2572–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smadja Storz S, Tovin A, Mracek P, Alon S, Foulkes NS, Gothilf Y (2013) Casein kinase 1delta activity: a key element in the zebrafish circadian timing system. PLoS One 8, e54189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903:263–268

    Article  CAS  PubMed  Google Scholar 

  21. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Nusslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  23. Sood R, English MA, Jones M, Mullikin J, Wang DM, Anderson M, Wu D, Chandrasekharappa SC, Yu J, Zhang J, Paul Liu P (2006) Methods for reverse genetic screening in zebrafish by resequencing and TILLING. Methods 39:220–227

    Article  CAS  PubMed  Google Scholar 

  24. DeBruyne J, Hurd MW, Gutierrez L, Kaneko M, Tan Y, Wells DE, Cahill GM (2004) Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 18:403–428

    Article  CAS  PubMed  Google Scholar 

  25. Tan Y, DeBruyne J, Cahill GM, Wells DE (2008) Identification of a mutation in the clock1 gene affecting zebrafish circadian rhythms. J Neurogenet 22:149–166

    Article  CAS  PubMed  Google Scholar 

  26. Varshney GK, Sood R, Burgess SM (2015) Understanding and editing the zebrafish genome. Adv Genet 92:1–52

    PubMed  Google Scholar 

  27. Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q, Zhu Z, Zhang B, Lin S, Burgess SM (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci U S A 104:12428–12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang P, Zhu Z, Lin S, Zhang B (2012) Reverse genetic approaches in zebrafish. J Genet Genomics 39:421–433

    Article  CAS  PubMed  Google Scholar 

  29. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  Google Scholar 

  31. Wang H, Hu YC, Markoulaki S, Welstead GG, Cheng AW, Shivalila CS, Pyntikova T, Dadon DB, Voytas DF, Bogdanove AJ, Page DC, Jaenisch R (2013) TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol 31:530–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kuperwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Moisan A, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahfeldt T, Daheron L, Zhang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA (2013) A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12:238–251

    Article  CAS  PubMed  Google Scholar 

  33. Ansai S, Sakuma T, Yamamoto T, Ariga H, Uemura N, Takahashi R, Kinoshita M (2013) Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 193:739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ma S, Zhang S, Wang F, Liu Y, Liu Y, Xu H, Liu C, Lin Y, Zhao P, Xia Q (2012) Highly efficient and specific genome editing in silkworm using custom TALENs. PLoS One 7, e45035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  37. Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X, Zhu Z, Lin S, Zhang B (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41:e141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang M, Zhong Z, Zhong Y, Zhang W, Wang H (2015) The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptors alpha (Roralpha). J Biol Chem 290:4367–4382

    Article  CAS  PubMed  Google Scholar 

  40. Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci U S A 105:1255–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, Huskey L, Ju B, Hesselson D, Zhong TP, Page-McCaw PS, Stainier DY, Chen W (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci U S A 109:15389–15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li X, Montgomery J, Cheng W, Noh JH, Hyde DR, Li L (2012) Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish. PLoS One 7, e40508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gothilf Y, Toyama R, Coon SL, Du SJ, Dawid IB, Klein DC (2002) Pineal-specific expression of green fluorescent protein under the control of the serotonin-N-acetyltransferase gene regulatory regions in transgenic zebrafish. Dev Dyn 225:241–249

    Article  CAS  PubMed  Google Scholar 

  51. Ziv L, Levkovitz S, Toyama R, Falcon J, Gothilf Y (2005) Functional development of the zebrafish pineal gland: light-induced expression of period2 is required for onset of the circadian clock. J Neuroendocrinol 17:314–320

    Article  CAS  PubMed  Google Scholar 

  52. Appelbaum L, Anzulovich A, Baler R, Gothilf Y (2005) Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem 280:11544–11551

    Article  CAS  PubMed  Google Scholar 

  53. Toyama R, Kim MH, Rebbert ML, Gonzales J, Burgess H, Dawid IB (2013) Habenular commissure formation in zebrafish is regulated by the pineal gland-specific gene unc119c. Dev Dyn 242:1033–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alon S, Eisenberg E, Jacob-Hirsch J, Rechavi G, Vatine G, Toyama R, Coon SL, Klein DC, Gothilf Y (2009) A new cis-acting regulatory element driving gene expression in the zebrafish pineal gland. Bioinformatics 25:559–562

    Article  CAS  PubMed  Google Scholar 

  55. Kaneko M, Cahill GM (2005) Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 3:e34

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kaneko M, Hernandez-Borsetti N, Cahill GM (2006) Diversity of zebrafish peripheral oscillators revealed by luciferase reporting. Proc Natl Acad Sci U S A 103:14614–14619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Whitmore D, Foulkes NS, Strahle U, Sassone-Corsi P (1998) Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nat Neurosci 1:701–707

    Article  CAS  PubMed  Google Scholar 

  58. Cermakian N, Whitmore D, Foulkes NS, Sassone-Corsi P (2000) Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc Natl Acad Sci U S A 97:4339–4344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Delaunay F, Thisse C, Marchand O, Laudet V, Thisse B (2000) An inherited functional circadian clock in zebrafish embryos. Science 289:297–300

    Article  CAS  PubMed  Google Scholar 

  60. Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray JP, Traver D, Schultz PG, Kay SA (2010) High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIalpha as a clock regulatory kinase. PLoS Biol 8, e1000559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weger M, Weger BD, Diotel N, Rastegar S, Hirota T, Kay SA, Strahle U, Dickmeis T (2013) Real-time in vivo monitoring of circadian E-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Dev Biol 380:259–273

    Article  CAS  PubMed  Google Scholar 

  62. Tovin A, Alon S, Ben-Moshe Z, Mracek P, Vatine G, Foulkes NS, Jacob-Hirsch J, Rechavi G, Toyama R, Coon SL, Klein DC, Eisenberg E, Gothilf Y (2012) Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet 8, e1003116

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li Y, Li G, Wang H, Du J, Yan J (2013) Analysis of a gene regulatory cascade mediating circadian rhythm in zebrafish. PLoS Comput Biol 9, e1002940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weger BD, Sahinbas M, Otto GW, Mracek P, Armant O, Dolle D, Lahiri K, Vallone D, Ettwiller L, Geisler R, Foulkes NS, Dickmeis T (2011) The light responsive transcriptome of the zebrafish: function and regulation. PLoS One 6, e17080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Junker JP, Noel ES, Guryev V, Peterson KA, Shah G, Huisken J, McMahon AP, Berezikov E, Bakkers J, van Oudenaarden A (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159:662–675

    Article  CAS  PubMed  Google Scholar 

  66. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q, Zhu Z, Zhang B, Lin S (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10:329–331

    Article  CAS  PubMed  Google Scholar 

  67. Li J, Zhang BB, Ren YG, Gu SY, Xiang YH, Du JL (2015) Intron targeting-mediated and endogenous gene integrity-maintaining knockin in zebrafish using the CRISPR/Cas9 system. Cell Res 25:634–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the grants from the National Basic Research Program of China (973 Program) (2012CB947600), the National Natural Science Foundation of China (NSFC) (31030062), the Jiangsu Distinguished Professorship Program (SR13400111), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions (YX13400214), the High-Level Innovative Team of Jiangsu Province, and the “333” Project of Jiangsu Province (BRA2015328). We wish to thank Dr. Nicolas Cermakian at the Douglas Mental Health University Institute and McGill University; Dr. Yoav Gothilf, Tel-Aviv University; and members of the Wang laboratory for their helpful comments on early versions of the chapter. Due to limited space, we regret that the works of many colleagues were not included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Wang .

Editor information

Editors and Affiliations

Appendices

Key Questions of Interest

  • What are advantages and disadvantages of zebrafish as a circadian model?

  • What are roles of zebrafish Per1b in maintaining circadian rhythms?

  • What are roles of zebrafish Per2 in maintaining circadian rhythms?

  • What are roles of zebrafish Clock1a in maintaining circadian rhythms?

Suggested Readings

2.1 Zebrafish Physiological and Behavioral Rhythms

Cahill GM, Hurd MW, Batchelor MM (1998) Circadian rhythmicity in the locomotor activity of larval zebrafish. Neuroreport 9:3445–3449

Liu C, Hu J, Qu C, Wang L, Huang G, Niu P, Zhong Z, Hong F, Wang G, Postlethwait JH, Wang H (2015) Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes. Sci Rep 5:8113

Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

Vatine G, Vallone D, Gothilf Y, Foulkes NS (2011) It’s time to swim! Zebrafish and the circadian clock. FEBS Lett 585:1485–1494

2.2 Mutational Analysis of Zebrafish Circadian Rhythmicity

DeBruyne J, Hurd MW, Gutierrez L, Kaneko M, Tan Y, Wells DE, Cahill GM (2004) Isolation and phenogenetics of a novel circadian rhythm mutant in zebrafish. J Neurogenet 18:403–428

Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H (2015) Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 35:2572–2587

Tan Y, DeBruyne J, Cahill GM, Wells DE (2008) Identification of a mutation in the clock1 gene affecting zebrafish circadian rhythms. J Neurogenet 22:149–166

Wang M, Zhong Z, Zhong Y, Zhang W, Wang H (2015) The zebrafish period2 protein positively regulates the circadian clock through mediation of retinoic acid receptor (RAR)-related orphan receptor alpha (Roralpha). J Biol Chem 290:4367–4382

2.3 Transgenic Analysis of Zebrafish Circadian Rhythmicity

Gothilf Y, Coon SL, Toyama R, Chitnis A, Namboodiri MA, Klein DC (1999) Zebrafish serotonin N-acetyltransferase-2: marker for development of pineal photoreceptors and circadian clock function. Endocrinology 140:4895–4903

Kaneko M, Cahill GM (2005) Light-dependent development of circadian gene expression in transgenic zebrafish. PLoS Biol 3:e34

Weger M, Weger BD, Diotel N, Rastegar S, Hirota T, Kay SA, Strahle U, Dickmeis T (2013) Real-time in vivo monitoring of circadian e-box enhancer activity: a robust and sensitive zebrafish reporter line for developmental, chemical and neural biology of the circadian clock. Dev Biol 380:259–273

2.4 Transcriptome Analysis of Zebrafish Circadian Rhythmicity

Li Y, Li G, Wang H, Du J, Yan J (2013) Analysis of a gene regulatory cascade mediating circadian rhythm in zebrafish. PLoS Comput Biol 9:e1002940

Tovin A, Alon S, Ben-Moshe Z, Mracek P, Vatine G, Foulkes NS, Jacob-Hirsch J, Rechavi G, Toyama R, Coon SL, Klein DC, Eisenberg E, Gothilf Y (2012) Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genet 8:e1003116

Weger BD, Sahinbas M, Otto GW, Mracek P, Armant O, Dolle D, Lahiri K, Vallone D, Ettwiller L, Geisler R, Foulkes NS, Dickmeis T (2011) The light responsive transcriptome of the zebrafish: function and regulation. PloS One 6:e17080

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Zhong, Z., Wang, M., Huang, G., Zhang, S., Wang, H. (2017). Molecular Genetic and Genomic Analyses of Zebrafish Circadian Rhythmicity. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_8

Download citation

Publish with us

Policies and ethics