Skip to main content

The Drosophila Clock System

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

The present chapter describes the circadian clock system in fruit flies starting with the molecular mechanisms that generate circadian rhythms and then moving to the organismic level, whereby most importance is given to the clock network in the brain. It is shown that the molecular clock controls neuronal excitability and synaptic plasticity of the clock neurons in the brain, that these clock neurons communicate with each other via neuropeptides, and that they have different roles in controlling activity rhythms. The mechanisms by which the clock in the brain is entrained to light and temperature cycles are explained as well as the known output pathways by which it controls behavior. The chapter ends by discussing the significance of the clock as well as its immediate and evolutionary adaptations to different environmental conditions. Throughout the chapter, comparisons are made to the circadian system of other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bünning E (1932) Über die Erblichkeit der Tagesperiodizität bei den Phaseolus-Blättern. Jahrb wiss Bot 77:439–480

    Google Scholar 

  2. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68(9):2112–2116

    Google Scholar 

  3. Hall JC (1998) Genetics of biological rhythms in Drosophila. Adv Genet 38:135–184

    Google Scholar 

  4. Weiner J (2000) Time, love, memory: a great biologist and his quest for the origins of behavior. Vintage

    Google Scholar 

  5. Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74:141–173

    Google Scholar 

  6. Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343(6258):536–540

    Google Scholar 

  7. Siwicki KK et al (1988) Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron 1(2):141–150

    Google Scholar 

  8. Hardin PE, Hall JC, Rosbash M (1992) Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci U S A 89(24):11711–11715

    Google Scholar 

  9. Zeng H, Hardin PE, Rosbash M (1994) Constitutive overexpression of the Drosophila period protein inhibits period mRNA cycling. Embo J 13(15):3590–3598

    Google Scholar 

  10. Brown SA, Kowalska E, Dallmann R (2012) (Re)inventing the circadian feedback loop. Dev Cell 22(3):477–487

    Article  CAS  PubMed  Google Scholar 

  11. Hardin PE, Panda S (2013) Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 23(5):724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sehgal A et al (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263(5153):1603–1606

    Google Scholar 

  13. Allada R et al (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93(5):791–804

    Google Scholar 

  14. Rutila JE et al (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Google Scholar 

  15. Blau J, Young MW (1999) Cycling vrille expression is required for a functional Drosophila clock. Cell 99(6):661–671

    Google Scholar 

  16. Cyran SA et al (2003) vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112(3):329–341

    Google Scholar 

  17. Kadener S et al (2007) Clockwork Orange is a transcriptional repressor and a new Drosophila circadian pacemaker component. Genes Dev 21(13):1675–1686

    Google Scholar 

  18. Lim C et al (2007) Clockwork orange encodes a transcriptional repressor important for circadian-clock amplitude in Drosophila. Curr Biol 17(12):1082–1089

    Google Scholar 

  19. Matsumoto A et al (2007) A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock. Genes Dev 21(13):1687–1700

    Google Scholar 

  20. Kumar S et al (2014) An ecdysone-responsive nuclear receptor regulates circadian rhythms in Drosophila. Nat Commun 5:5697

    Google Scholar 

  21. Jaumouille E et al (2015) Transcriptional regulation via nuclear receptor crosstalk required for the Drosophila circadian clock. Curr Biol 25(11):1502–1508

    Google Scholar 

  22. Beuchle D, Jaumouille E, Nagoshi E (2012) The nuclear receptor unfulfilled is required for free-running clocks in Drosophila pacemaker neurons. Curr Biol 22(13):1221–1227

    Google Scholar 

  23. Peschel N, Helfrich-Förster C (2011) Setting the clock – by nature: circadian rhythm in the fruitfly Drosophila melanogaster. FEBS Lett 585(10):1435–1442

    Google Scholar 

  24. Ozkaya O, Rosato E (2012) The circadian clock of the fly: a neurogenetics journey through time. Adv Genet 77:79–123

    CAS  PubMed  Google Scholar 

  25. Tataroglu O, Emery P (2015) The molecular ticks of the Drosophila circadian clock. Curr Opin Insect Sci 7:51–57

    Google Scholar 

  26. Bae K, Edery I (2006) Regulating a circadian clock’s period, phase and amplitude by phosphorylation: insights from Drosophila. J Biochem 140(5):609–617

    Google Scholar 

  27. Lim C, Allada R (2013) Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci 16(11):1544–1550

    Article  CAS  PubMed  Google Scholar 

  28. Kloss B et al (1998) The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iepsilon. Cell 94(1):97–107

    Article  CAS  PubMed  Google Scholar 

  29. Price JL et al (1998) double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94(1):83–95

    Google Scholar 

  30. Edery I et al (1994) Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A 91(6):2260–2264

    Google Scholar 

  31. Naidoo N et al (1999) A role for the proteasome in the light response of the timeless clock protein. Science 285(5434):1737–1741

    Article  CAS  PubMed  Google Scholar 

  32. Saez L, Young MW (1996) Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17(5):911–920

    Google Scholar 

  33. Chiu JC et al (2008) The phospho-occupancy of an atypical SLIMB-binding site on PERIOD that is phosphorylated by DOUBLETIME controls the pace of the clock. Genes Dev 22(13):1758–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lim C, Allada R (2013) ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340(6134):875–879

    Google Scholar 

  35. Lim C et al (2011) The novel gene twenty-four defines a critical translational step in the Drosophila clock. Nature 470(7334):399–403

    Google Scholar 

  36. Zhang Y et al (2013) A role for Drosophila ATX2 in activation of PER translation and circadian behavior. Science 340(6134):879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ko HW et al (2010) A hierarchical phosphorylation cascade that regulates the timing of PERIOD nuclear entry reveals novel roles for proline-directed kinases and GSK-3beta/SGG in circadian clocks. J Neurosci 30(38):12664–12675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dusik V et al (2014) The MAP kinase p38 is part of Drosophila melanogaster’s circadian clock. PLoS Genet 10(8), e1004565

    Google Scholar 

  39. Kim EY et al (2012) A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev 26(5):490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shafer OT, Rosbash M, Truman JW (2002) Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J Neurosci 22(14):5946–5954

    Google Scholar 

  41. Meyer P, Saez L, Young MW (2006) PER-TIM interactions in living Drosophila cells: an interval timer for the circadian clock. Science 311(5758):226–229

    Google Scholar 

  42. Jang AR et al (2015) Drosophila TIM binds importin alpha1, and acts as an adapter to transport PER to the nucleus. PLoS Genet 11(2), e1004974

    Google Scholar 

  43. Gekakis N et al (1995) Isolation of timeless by PER protein interaction: defective interaction between timeless protein and long-period mutant PERL. Science 270(5237):811–815

    Article  CAS  PubMed  Google Scholar 

  44. Lee C, Bae K, Edery I (1999) PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol Cell Biol 19(8):5316–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu W et al (2006) PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 20(6):723–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee C et al (1996) Resetting the Drosophila clock by photic regulation of PER and a PER-TIM complex. Science 271(5256):1740–1744

    Google Scholar 

  47. Myers MP et al (1996) Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271(5256):1736–1740

    Google Scholar 

  48. Zeng H et al (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380(6570):129–135

    Google Scholar 

  49. Chiu JC, Ko HW, Edery I (2011) NEMO/NLK phosphorylates PERIOD to initiate a time-delay phosphorylation circuit that sets circadian clock speed. Cell 145(3):357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu W, Houl JH, Hardin PE (2011) NEMO kinase contributes to core period determination by slowing the pace of the Drosophila circadian oscillator. Curr Biol 21(9):756–761

    Google Scholar 

  51. Garbe DS et al (2013) Cooperative interaction between phosphorylation sites on PERIOD maintains circadian period in Drosophila. PLoS Genet 9(9), e1003749

    Google Scholar 

  52. Szabo A et al (2013) The CK2 kinase stabilizes CLOCK and represses its activity in the Drosophila circadian oscillator. PLoS Biol 11(8), e1001645

    Google Scholar 

  53. Lee E et al (2014) Phosphorylation of a central clock transcription factor is required for thermal but not photic entrainment. PLoS Genet 10(8), e1004545

    Article  PubMed  PubMed Central  Google Scholar 

  54. Plautz JD et al (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278(5343):1632–1635

    Google Scholar 

  55. Giebultowicz JM (2001) Peripheral clocks and their role in circadian timing: insights from insects. Philos Trans R Soc Lond B Biol Sci 356(1415):1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ito C et al (2008) Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A 105(24):8446–8451

    Google Scholar 

  57. Menet JS, Hardin PE (2014) Circadian clocks: the tissue is the issue. Curr Biol 24(1):R25–R27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Abruzzi KC et al (2011) Drosophila CLOCK target gene characterization: implications for circadian tissue-specific gene expression. Genes Dev 25(22):2374–2386

    Google Scholar 

  59. Meireles-Filho AC et al (2011) cis-regulatory requirements for tissue-specific programs of the circadian clock. Curr Biol 24(1):1–10

    Article  Google Scholar 

  60. Paquet ER, Rey G, Naef F (2008) Modeling an evolutionary conserved circadian cis-element. PLoS Comput Biol 4(2), e38

    Article  PubMed  PubMed Central  Google Scholar 

  61. McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107(5):567–578

    Google Scholar 

  62. Claridge-Chang A et al (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32(4):657–671

    Google Scholar 

  63. Lin Y et al (2002) Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc Natl Acad Sci U S A 99(14):9562–9567

    Google Scholar 

  64. Huang Y et al (2013) Translational profiling of clock cells reveals circadianly synchronized protein synthesis. PLoS Biol 11(11), e1001703

    Article  PubMed  PubMed Central  Google Scholar 

  65. Nagoshi E et al (2010) Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci 13(1):60–68

    Google Scholar 

  66. Handler AM, Konopka RJ (1979) Transplantation of a circadian pacemaker in Drosophila. Nature 279(5710):236–238

    Google Scholar 

  67. Jackson FR et al (2015) Glial cell regulation of rhythmic behavior. Methods Enzymol 552:45–73

    Article  CAS  PubMed  Google Scholar 

  68. Kaneko M, Helfrich-Förster C, Hall JC (1997) Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci 17(17):6745–6760

    Google Scholar 

  69. Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422(1):66–94

    Google Scholar 

  70. Shafer OT et al (2006) Reevaluation of Drosophila melanogaster’s neuronal circadian pacemakers reveals new neuronal classes. J Comp Neurol 498(2):180–193

    Google Scholar 

  71. Helfrich-Förster C et al (2007) Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J Comp Neurol 500(1):47–70

    Google Scholar 

  72. Helfrich-Förster C (2003) The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc Res Tech 62(2):94–102

    Google Scholar 

  73. Kuhlman SJ (2007) Biological rhythms workshop IB: neurophysiology of SCN pacemaker function. Cold Spring Harb Symp Quant Biol 72:21–33

    Article  CAS  PubMed  Google Scholar 

  74. Welsh DK et al (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4):697–706

    Article  CAS  PubMed  Google Scholar 

  75. Herzog ED, Takahashi JS, Block GD (1998) Clock controls circadian period in isolated suprachiasmatic nucleus neurons. Nat Neurosci 1(8):708–713

    Article  CAS  PubMed  Google Scholar 

  76. Nakamura W et al (2002) Clock mutation lengthens the circadian period without damping rhythms in individual SCN neurons. Nat Neurosci 5(5):399–400

    CAS  PubMed  Google Scholar 

  77. Liu C et al (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91(6):855–860

    Article  CAS  PubMed  Google Scholar 

  78. Cao G, Nitabach MN (2008) Circadian control of membrane excitability in Drosophila melanogaster lateral ventral clock neurons. J Neurosci 28(25):6493–6501

    Google Scholar 

  79. Fogle KJ et al (2015) CRYPTOCHROME-mediated phototransduction by modulation of the potassium ion channel beta-subunit redox sensor. Proc Natl Acad Sci U S A 112(7):2245–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fogle KJ et al (2011) CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331(6023):1409–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheeba V et al (2008) Circadian- and light-dependent regulation of resting membrane potential and spontaneous action potential firing of Drosophila circadian pacemaker neurons. J Neurophysiol 99(2):976–988

    Google Scholar 

  82. Flourakis M, Allada R (2015) Patch-clamp electrophysiology in Drosophila circadian pacemaker neurons. Methods Enzymol 552:23–44

    Google Scholar 

  83. Flourakis M et al (2015) A conserved bicycle model for circadian clock control of membrane excitability. Cell 162(4):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muraro NI, Ceriani MF (2015) Acetylcholine from visual circuits modulates the activity of arousal neurons in Drosophila. J Neurosci 35(50):16315–16327

    Google Scholar 

  85. Michel S et al (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259(5092):239–241

    Article  CAS  PubMed  Google Scholar 

  86. Meredith AL et al (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9(8):1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ruben M et al (2012) A mechanism for circadian control of pacemaker neuron excitability. J Biol Rhythms 27(5):353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cao G et al (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154(4):904–913

    Article  CAS  PubMed  Google Scholar 

  89. Fernandez MP, Berni J, Ceriani MF (2008) Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 6(3), e69

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sivachenko A et al (2013) The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 79(2):281–292

    Google Scholar 

  91. Gorostiza EA et al (2014) Circadian pacemaker neurons change synaptic contacts across the day. Curr Biol 24(18):2161–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Petsakou A, Sapsis TP, Blau J (2015) Circadian rhythms in rho1 activity regulate neuronal plasticity and network hierarchy. Cell 162(4):823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pyza E, Meinertzhagen IA (1997) Neurites of period-expressing PDH cells in the fly’s optic lobe exhibit circadian oscillations in morphology. Eur J Neurosci 9(8):1784–1788

    Article  CAS  PubMed  Google Scholar 

  94. Hermann-Luibl C, Helfrich-Förster C (2015) Clock network in Drosophila. Curr Opin Insect Sci 7:65–70

    Article  Google Scholar 

  95. Beckwith EJ, Ceriani MF (2015) Communication between circadian clusters: the key to a plastic network. FEBS Lett 589(22):3336–3342

    Google Scholar 

  96. Shang Y et al (2011) Imaging analysis of clock neurons reveals light buffers the wake-promoting effect of dopamine. Nat Neurosci 14(7):889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Collins B et al (2012) Balance of activity between LN(v)s and glutamatergic dorsal clock neurons promotes robust circadian rhythms in Drosophila. Neuron 74(4):706–718

    Google Scholar 

  98. Lelito KR, Shafer OT (2012) Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila’s circadian clock neuron network. J Neurophysiol 107(8):2096–2108

    Google Scholar 

  99. Gmeiner F et al (2013) GABA(B) receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster. J Exp Biol 216(Pt 20):3837–3843

    Google Scholar 

  100. Muraro NI, Pirez N, Ceriani MF (2013) The circadian system: plasticity at many levels. Neuroscience 247:280–293

    Article  CAS  PubMed  Google Scholar 

  101. Pyza E, Meinertzhagen IA (2003) The regulation of circadian rhythms in the fly’s visual system: involvement of FMRFamide-like neuropeptides and their relationship to pigment dispersing factor in Musca domestica and Drosophila melanogaster. Neuropeptides 37(5):277–289

    Google Scholar 

  102. Damulewicz M, Rosato E, Pyza E (2013) Circadian regulation of the Na+/K+-ATPase alpha subunit in the visual system is mediated by the pacemaker and by retina photoreceptors in Drosophila melanogaster. PLoS ONE 8(9), e73690

    Google Scholar 

  103. Krzeptowski W et al (2014) External and circadian inputs modulate synaptic protein expression in the visual system of Drosophila melanogaster. Front Physiol 5:102

    Google Scholar 

  104. Woznicka O et al (2015) BRP-170 and BRP190 isoforms of Bruchpilot protein differentially contribute to the frequency of synapses and synaptic circadian plasticity in the visual system of Drosophila. Front Cell Neurosci 9:238

    Google Scholar 

  105. Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332(6037):1576–1581

    Google Scholar 

  106. Gilestro GF, Tononi G, Cirelli C (2009) Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324(5923):109–112

    Google Scholar 

  107. Helfrich-Förster C (1995) The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc Natl Acad Sci U S A 92(2):612–616

    Google Scholar 

  108. Helfrich-Förster C et al (2000) Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J Neurosci 20(9):3339–3353

    Google Scholar 

  109. Helfrich-Förster C (2014) From neurogenetic studies in the fly brain to a concept in circadian biology. J Neurogenet 28(3–4):329–347

    Article  PubMed  Google Scholar 

  110. Renn SC et al (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99(7):791–802

    Google Scholar 

  111. Shafer OT, Yao Z (2014) Pigment-dispersing factor signaling and circadian rhythms in insect locomotor activity. Curr Opin Insect Sci 1:73–80

    Article  PubMed  PubMed Central  Google Scholar 

  112. Park JH et al (2000) Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc Natl Acad Sci U S A 97(7):3608–3613

    Google Scholar 

  113. Hermann-Luibl C et al (2014) The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. J Neurosci 34(29):9522–9536

    Google Scholar 

  114. Johard HA et al (2009) Peptidergic clock neurons in Drosophila: ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons. J Comp Neurol 516(1):59–73

    Google Scholar 

  115. Damulewicz M, Pyza E (2013) The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity. PLoS ONE 6(6), e21258

    Google Scholar 

  116. Lin Y, Stormo GD, Taghert PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24(36):7951–7957

    Google Scholar 

  117. Yoshii T et al (2009) The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila’s clock. J Neurosci 29(8):2597–2610

    Article  CAS  PubMed  Google Scholar 

  118. Shafer OT et al (2008) Widespread receptivity to neuropeptide PDF throughout the neuronal circadian clock network of Drosophila revealed by real-time cyclic AMP imaging. Neuron 58(2):223–237

    Google Scholar 

  119. Im SH, Taghert PH (2010) PDF receptor expression reveals direct interactions between circadian oscillators in Drosophila. J Comp Neurol 518(11):1925–1945

    Google Scholar 

  120. Choi C et al (2013) Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila. Cell Rep 2(2):332–344

    Article  Google Scholar 

  121. Duvall LB, Taghert PH (2012) The circadian neuropeptide PDF signals preferentially through a specific adenylate cyclase isoform AC3 in M pacemakers of Drosophila. PLoS Biol 10(6), e1001337

    Google Scholar 

  122. Duvall LB, Taghert PH (2013) E and M circadian pacemaker neurons use different PDF receptor signalosome components in Drosophila. J Biol Rhythms 28(4):239–248

    Google Scholar 

  123. Stoleru D et al (2005) A resetting signal between Drosophila pacemakers synchronizes morning and evening activity. Nature 438(7065):238–242

    Google Scholar 

  124. Guo F et al (2014) PDF neuron firing phase-shifts key circadian activity neurons in Drosophila. Elife, 3

    Google Scholar 

  125. Kunst M et al (2014) Calcitonin gene-related peptide neurons mediate sleep-specific circadian output in Drosophila. Curr Biol 24(22):2652–2664

    Google Scholar 

  126. Lee G, Bahn JH, Park JH (2006) Sex- and clock-controlled expression of the neuropeptide F gene in Drosophila. Proc Natl Acad Sci U S A 103(33):12580–12585

    Google Scholar 

  127. Hermann C et al (2012) Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster. J Comp Neurol 520(5):970–987

    Google Scholar 

  128. Nässel DR, Wegener C (2011) A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate neuropeptide Y signaling? Peptides 32(6):1335–1355

    Google Scholar 

  129. He C et al (2013) Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster. PLoS ONE 8(9), e74237

    Google Scholar 

  130. Shang Y et al (2013) Short neuropeptide F is a sleep-promoting inhibitory modulator. Neuron 80(1):171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kula-Eversole E et al (2010) Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 107(30):13497–13502

    Google Scholar 

  132. Collins B et al (2014) Differentially timed extracellular signals synchronize pacemaker neuron clocks. PLoS Biol 12(9), e1001959

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hamasaka Y et al (2007) Glutamate and its metabotropic receptor in Drosophila clock neuron circuits. J Comp Neurol 505(1):32–45

    Google Scholar 

  134. Helfrich-Förster C (2000) Differential control of morning and evening components in the activity rhythm of Drosophila melanogaster – sex-specific differences suggest a different quality of activity. J Biol Rhythms 15(2):135–154

    Article  PubMed  Google Scholar 

  135. Pittendrigh C, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: a clock for all seasons. J Comp Physiol A 106:333–355

    Article  Google Scholar 

  136. Jagota A, de la Iglesia HO, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3(4):372–376

    Article  CAS  PubMed  Google Scholar 

  137. Grima B et al (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431(7010):869–873

    Google Scholar 

  138. Stoleru D et al (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431(7010):862–868

    Google Scholar 

  139. Rieger D et al (2006) Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J Neurosci 26(9):2531–2543

    Google Scholar 

  140. Zhang L et al (2010) DN1(p) circadian neurons coordinate acute light and PDF inputs to produce robust daily behavior in Drosophila. Curr Biol 20(7):591–599

    Google Scholar 

  141. Helfrich-Förster C (2009) Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythms 24(4):259–270

    Article  PubMed  Google Scholar 

  142. Yoshii T, Rieger D, Helfrich-Förster C (2012) Two clocks in the brain: an update of the morning and evening oscillator model in Drosophila. Prog Brain Res 199:59–82

    Google Scholar 

  143. Liang X, Holy TE, Taghert PH (2016) Synchronous Drosophila circadian pacemakers display nonsynchronous Ca2+ rhythms in vivo. Science 351(6276):976–81

    Google Scholar 

  144. Sheeba V et al (2008) The Drosophila circadian pacemaker circuit: Pas De Deux or Tarantella? Crit Rev Biochem Mol Biol 43(1):37–61

    Google Scholar 

  145. Yao Z, Shafer OT (2014) The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343(6178):1516–1520

    Google Scholar 

  146. Guo F et al (2016) Circadian neuron feedback controls the Drosophila sleep–activity profile. Nature 536(7616):292–297

    Article  CAS  PubMed  Google Scholar 

  147. Dissel S et al (2014) The logic of circadian organization in Drosophila. Curr Biol 24(19):2257–2266

    Google Scholar 

  148. Yoshii T et al (2004) Drosophila cry b mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light. J Insect Physiol 50(6):479–488

    Google Scholar 

  149. Yoshii T et al (2015) Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila. J Neurosci 35(15):6131–6141

    Google Scholar 

  150. Helfrich-Förster C et al (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30(1):249–261

    Article  PubMed  Google Scholar 

  151. Stanewsky R et al (1998) The cry b mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95(5):681–692

    Google Scholar 

  152. Emery P et al (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5):669–679

    Google Scholar 

  153. Emery P et al (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26(2):493–504

    Article  CAS  PubMed  Google Scholar 

  154. Ceriani MF et al (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285(5427):553–556

    Article  CAS  PubMed  Google Scholar 

  155. Koh K, Zheng X, Sehgal A (2006) JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Science 312(5781):1809–1812

    Google Scholar 

  156. Peschel N et al (2009) Light-dependent interactions between the Drosophila circadian clock factors cryptochrome, jetlag, and timeless. Curr Biol 19(3):241–247

    Google Scholar 

  157. Ozturk N et al (2013) Ramshackle (Brwd3) promotes light-induced ubiquitylation of Drosophila Cryptochrome by DDB1-CUL4-ROC1 E3 ligase complex. Proc Natl Acad Sci U S A 110(13):4980–4985

    Google Scholar 

  158. Kistenpfennig C et al (2012) Phase-shifting the fruit fly clock without cryptochrome. J Biol Rhythms 27(2):117–125

    Article  PubMed  Google Scholar 

  159. Emery P et al (2000) A unique circadian-rhythm photoreceptor. Nature 404(6777):456–457

    Article  CAS  PubMed  Google Scholar 

  160. Yoshii T et al (2008) Cryptochrome is present in the compound eyes and a subset of Drosophila’s clock neurons. J Comp Neurol 508(6):952–966

    Google Scholar 

  161. Benito J et al (2008) The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J Biol Rhythms 23(4):296–307

    Google Scholar 

  162. Tang CH et al (2010) Light-mediated TIM degradation within Drosophila pacemaker neurons (s-LNvs) is neither necessary nor sufficient for delay zone phase shifts. Neuron 66(3):378–385

    Google Scholar 

  163. Busza A et al (2004) Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304(5676):1503–1506

    Google Scholar 

  164. Vinayak P et al (2013) Exquisite light sensitivity of Drosophila melanogaster cryptochrome. PLoS Genet 9(7), e1003615

    Google Scholar 

  165. Lamba P et al (2014) Morning and evening oscillators cooperate to reset circadian behavior in response to light input. Cell Rep 7(3):601–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Eck S, Helfrich-Förster C, Rieger D (2016) The timed depolarizaition of morning and evening oscillators phase shifts the circadian clock of Drosophila. J Biol Rhythms 31(5):428–442

    Google Scholar 

  167. Collins B et al (2006) Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr Biol 16(5):441–449

    Google Scholar 

  168. Ivanchenko M, Stanewsky R, Giebultowicz JM (2001) Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 16(3):205–215

    Google Scholar 

  169. Krishnan B et al (2001) A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411(6835):313–317

    Google Scholar 

  170. Mazzotta G et al (2013) Fly cryptochrome and the visual system. Proc Natl Acad Sci U S A 110(15):6163–6168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yoshii T, Ahmad M, Helfrich-Förster C (2009) Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol 7(4), e1000086

    Google Scholar 

  172. Fedele G et al (2014) An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat Commun 5:4391

    Google Scholar 

  173. Rieger D, Stanewsky R, Helfrich-Förster C (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18(5):377–391

    Google Scholar 

  174. Rieger D et al (2007) The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J Biol Rhythms 22(5):387–399

    Google Scholar 

  175. Schlichting M et al (2015) Twilight dominates over moonlight in adjusting Drosophila’s activity pattern. J Biol Rhythms 30(2):117–128

    Google Scholar 

  176. Bachleitner W et al (2007) Moonlight shifts the endogenous clock of Drosophila melanogaster. Proc Natl Acad Sci U S A 104(9):3538–3543

    Google Scholar 

  177. Schlichting M et al (2014) Moonlight detection by Drosophila’s endogenous clock depends on multiple photopigments in the compound eyes. J Biol Rhythms. in press

    Google Scholar 

  178. Helfrich-Förster C (2002) The circadian system of Drosophila melanogaster and its light input pathways. Zoology (Jena) 105(4):297–312

    Google Scholar 

  179. Helfrich-Förster C et al (2002) The extraretinal eyelet of Drosophila: development, ultrastructure, and putative circadian function. J Neurosci 22(21):9255–9266

    Google Scholar 

  180. Sheeba V et al (2008) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18(20):1537–1545

    Google Scholar 

  181. Shang Y, Griffith LC, Rosbash M (2008) Light-arousal and circadian photoreception circuits intersect at the large PDF cells of the Drosophila brain. Proc Natl Acad Sci U S A 105(50):19587–19594

    Google Scholar 

  182. Wülbeck C, Grieshaber E, Helfrich-Förster C (2008) Pigment-dispersing factor (PDF) has different effects on Drosophila’s circadian clocks in the accessory medulla and in the dorsal brain. J Biol Rhythms 23(5):409–424

    Google Scholar 

  183. Rister J et al (2007) Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56(1):155–170

    Google Scholar 

  184. McCarthy EV et al (2011) Synchronized bilateral synaptic inputs to Drosophila melanogaster neuropeptidergic rest/arousal neurons. J Neurosci 31(22):8181–8193

    Google Scholar 

  185. Belvin MP, Zhou H, Yin JC (1999) The Drosophila dCREB2 gene affects the circadian clock. Neuron 22(4):777–787

    Google Scholar 

  186. Lim C et al (2007) Functional role of CREB-binding protein in the circadian clock system of Drosophila melanogaster. Mol Cell Biol 27(13):4876–4890

    Google Scholar 

  187. Hung HC et al (2007) Circadian transcription depends on limiting amounts of the transcription co-activator nejire/CBP. J Biol Chem 282(43):31349–31357

    Google Scholar 

  188. Mizrak D et al (2012) Electrical activity can impose time of day on the circadian transcriptome of pacemaker neurons. Curr Biol 22(20):1871–1880

    Google Scholar 

  189. Li Y et al (2014) PDF and cAMP enhance PER stability in Drosophila clock neurons. Proc Natl Acad Sci U S A 111(13):E1284–E1290

    Google Scholar 

  190. Menegazzi P et al (2013) Drosophila clock neurons under natural conditions. J Biol Rhythms 28(1):3–14

    Google Scholar 

  191. Schlichting M et al (2016) A neural network underlying circadian entrainment and photoperiodic adjustment of sleep and activity in Drosophila. J Neurosci 36(35):9084–9096

    Google Scholar 

  192. Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16(4):415–429

    Google Scholar 

  193. Wheeler DA et al (1993) Behavior in light-dark cycles of Drosophila mutants that are arrhythmic, blind, or both. J Biol Rhythms 8(1):67–94

    Google Scholar 

  194. Kempinger L et al (2009) The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock. Chronobiol Int 26(2):151–166

    Article  CAS  PubMed  Google Scholar 

  195. Schlichting M, Menegazzi P, Helfrich-Förster C (2015) Normal vision can compensate for the loss of the circadian clock. Proc Biol Sci. 282(1815)

    Google Scholar 

  196. Glaser FT, Stanewsky R (2007) Synchronization of the Drosophila circadian clock by temperature cycles. Cold Spring Harb Symp Quant Biol 72:233–242

    Google Scholar 

  197. Busza A, Murad A, Emery P (2007) Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J Neurosci 27(40):10722–10733

    Google Scholar 

  198. Matsumoto A et al (1998) Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J Insect Physiol 44(7–8):587–596

    Google Scholar 

  199. Yoshii T et al (2005) Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur J Neurosci 22(5):1176–1184

    Google Scholar 

  200. Yoshii T, Sakamoto M, Tomioka K (2002) A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster. Zool Sci 19(8):841–850

    Google Scholar 

  201. Edery I, Rutila JE, Rosbash M (1994) Phase shifting of the circadian clock by induction of the Drosophila period protein. Science 263(5144):237–240

    Google Scholar 

  202. Sidote D et al (1998) Differential effects of light and heat on the Drosophila circadian clock proteins PER and TIM. Mol Cell Biol 18(4):2004–2013

    Google Scholar 

  203. Kaushik R et al (2007) PER-TIM interactions with the photoreceptor cryptochrome mediate circadian temperature responses in Drosophila. PLoS Biol 5(6), e146

    Google Scholar 

  204. Yoshii T, Hermann C, Helfrich-Förster C (2010) Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature. J Biol Rhythms 25(6):387–398

    Google Scholar 

  205. Yoshii T et al (2009) Synergic entrainment of Drosophila’s circadian clock by light and temperature. J Biol Rhythms 24(6):452–464

    Google Scholar 

  206. Miyasako Y, Umezaki Y, Tomioka K (2007) Separate sets of cerebral clock neurons are responsible for light and temperature entrainment of Drosophila circadian locomotor rhythms. J Biol Rhythms 22(2):115–126

    Google Scholar 

  207. Picot M et al (2009) A role for blind DN2 clock neurons in temperature entrainment of the Drosophila larval brain. J Neurosci 29(26):8312–8320

    Google Scholar 

  208. Currie J, Goda T, Wijnen H (2009) Selective entrainment of the Drosophila circadian clock to daily gradients in environmental temperature. BMC Biol 7:49

    Google Scholar 

  209. Hamada FN et al (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220

    Google Scholar 

  210. Glaser FT, Stanewsky R (2005) Temperature synchronization of the Drosophila circadian clock. Curr Biol 15(15):1352–1363

    Google Scholar 

  211. Sehadova H et al (2009) Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64(2):251–266

    Google Scholar 

  212. Kwon Y et al (2010) Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci 30(31):10465–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wolfgang W et al (2013) The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster. Proc Biol Sci 280(1768):20130959

    Google Scholar 

  214. Tang X et al (2013) Temperature integration at the AC thermosensory neurons in Drosophila. J Neurosci 33(3):894–901

    Google Scholar 

  215. Kaneko H et al (2012) Circadian rhythm of temperature preference and its neural control in Drosophila. Curr Biol 22(19):1851–1857

    Google Scholar 

  216. Head LM et al (2015) The influence of light on temperature preference in Drosophila. Curr Biol 25(8):1063–1068

    Google Scholar 

  217. Lee Y, Montell C (2013) Drosophila TRPA1 functions in temperature control of circadian rhythm in pacemaker neurons. J Neurosci 33(16):6716–6725

    Google Scholar 

  218. Das A, Holmes TC, Sheeba V (2015) dTRPA1 modulates afternoon peak of activity of fruit flies Drosophila melanogaster. PLoS ONE 10(7), e0134213

    Google Scholar 

  219. Green EW et al (n.d.) Drosophila circadian rhythms in seminatural environments: summer afternoon component is not an artifact and requires TrpA1 channels. Proc Natl Acad Sci U S A 112(28):8702–8707

    Google Scholar 

  220. Pittendrigh C, Bruce V, Kaus P (1958) On the significance of transients in daily rhythms. Proc Natl Acad Sci U S A 44(9):965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Gentile C et al (2013) Cryptochrome antagonizes synchronization of Drosophila’s circadian clock to temperature cycles. Curr Biol 23(3):185–195

    Google Scholar 

  222. Pirez N, Christmann BL, Griffith LC (2013) Daily rhythms in locomotor circuits in Drosophila involve PDF. J Neurophysiol 110(3):700–708

    Google Scholar 

  223. Cavanaugh DJ et al (2014) Identification of a circadian output circuit for rest:activity rhythms in Drosophila. Cell 157(3):689–701

    Google Scholar 

  224. Cavanaugh DJ et al (2016) The circadian clock gates sleep through time-of-day dependent modulation of sleep-promoting neurons. Sleep 39(2):345–356

    Google Scholar 

  225. Cavey M, Collins B, Blau J (2016) Circadian rhythms in neuronal activity propagate through output circuits. Nat Neurosci 19(4):587–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Kahsai L, Martin JR, Winther AM (2010) Neuropeptides in the Drosophila central complex in modulation of locomotor behavior. J Exp Biol 213:2256–2265

    Article  CAS  PubMed  Google Scholar 

  227. Chouhan NS et al (2015) Flies remember the time of day. Curr Biol 25(12):1619–1624

    Article  CAS  PubMed  Google Scholar 

  228. Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13(6):471–478

    Google Scholar 

  229. Beaver LM et al (2002) Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. Proc Natl Acad Sci U S A 99(4):2134–2139

    Google Scholar 

  230. Krishnan N et al (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY) 1(11):937–948

    Google Scholar 

  231. Krishnan N, Davis AJ, Giebultowicz JM (2008) Circadian regulation of response to oxidative stress in Drosophila melanogaster. Biochem Biophys Res Commun 374(2):299–303

    Google Scholar 

  232. Vanin S et al (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484(7394):371–375

    Google Scholar 

  233. De J et al (2013) Significance of activity peaks in fruit flies, Drosophila melanogaster, under seminatural conditions. Proc Natl Acad Sci U S A 110(22):8984–8989

    Google Scholar 

  234. Menegazzi P, Yoshii T, Helfrich-Förster C (2012) Laboratory versus nature: the two sides of the Drosophila circadian clock. J Biol Rhythms 27(6):433–442

    Google Scholar 

  235. Sakai T, Ishida N (2001) Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci U S A 98(16):9221–9225

    Google Scholar 

  236. Billeter JC et al (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461(7266):987–991

    Google Scholar 

  237. Tauber E et al (2003) Temporal mating isolation driven by a behavioral gene in Drosophila. Curr Biol 13(2):140–145

    Google Scholar 

  238. Kyriacou CP (2014) Functional analysis of natural clock gene variation. In: Dubnau J (ed) Behavioral genetics of the fly (Drosophila melanogaster). Cambridge University Press, Cambridge, pp 183–191

    Google Scholar 

  239. Majercak J, Chen WF, Edery I (2004) Splicing of the period gene 3′-terminal intron is regulated by light, circadian clock factors, and phospholipase C. Mol Cell Biol 24(8):3359–3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Majercak J et al (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24(1):219–230

    Article  CAS  PubMed  Google Scholar 

  241. Montelli S et al (2015) period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. J Biol Rhythms 30(3):217–227

    Google Scholar 

  242. Low KH et al (2008) Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 60(6):1054–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Low KH et al (2012) Natural variation in the Drosophila melanogaster clock gene period modulates splicing of its 3′-terminal intron and mid-day siesta. PLoS ONE 7(11), e49536

    Google Scholar 

  244. Yu Q et al (1987) Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature 326(6115):765–769

    Google Scholar 

  245. Costa R, Kyriacou CP (1998) Functional and evolutionary implications of natural variation in clock genes. Curr Opin Neurobiol 8(5):659–664

    Article  CAS  PubMed  Google Scholar 

  246. Kyriacou CP et al (2008) Clines in clock genes: fine-tuning circadian rhythms to the environment. Trends Genet 24(3):124–132

    Article  CAS  PubMed  Google Scholar 

  247. Rosato E et al (1994) Molecular polymorphism in the period gene of Drosophila simulans. Genetics 138(3):693–707

    Google Scholar 

  248. Sandrelli F et al (2007) A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316(5833):1898–1900

    Google Scholar 

  249. Tauber E et al (2007) Natural selection favors a newly derived timeless allele in Drosophila melanogaster. Science 316(5833):1895–1898

    Google Scholar 

  250. Pittendrigh CS, Takamura T (1989) Latitudinal clines in the properties of a circadian pacemaker. J Biol Rhythms 4(2):217–235

    Article  CAS  PubMed  Google Scholar 

  251. Hermann C et al (2013) The circadian clock network in the brain of different Drosophila species. J Comp Neurol 521(2):367–388

    Google Scholar 

  252. Kauranen H et al (2012) Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana. J Biol Rhythms 27(5):377–387

    Google Scholar 

Download references

Acknowledgments

I thank Ezio Rosato, Taishi Yoshii, Pamela Menegazzi, and Christiane Hermann-Luibl for their discussions and useful comments on this chapter and Marta Beauchamp for the language editing. Furthermore, I thank the German Research Foundation, the DFG, and the EU for continuously funding the research of my group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Helfrich-Förster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Helfrich-Förster, C. (2017). The Drosophila Clock System. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_6

Download citation

Publish with us

Policies and ethics