Skip to main content

Basic Principles Underlying Biological Oscillations and Their Entrainment

  • Chapter
  • First Online:
Biological Timekeeping: Clocks, Rhythms and Behaviour

Abstract

Biological oscillators govern life-supporting processes from unicellular organisms to the most complex life forms. The timescales may vary from tidal rhythms to annual rhythms. Here we will focus on the organisation of daily rhythms and the underlying circadian oscillators. The molecular mechanisms of circadian oscillators are discussed for mammals and insects. Different light resetting mechanisms and input pathways of circadian oscillators are explained and used to evaluate basic principles of light entrainment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hut RA, Beersma DG (2011) Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Philos Trans R Soc B-Biol Sci 366:2141–2154

    Article  CAS  Google Scholar 

  2. Dardente H, Wyse CA, Birnie MJ, Dupre SM, Loudon AS, Lincoln GA, Hazlerigg DG (2010) A molecular switch for photoperiod responsiveness in mammals. Curr Biol 20:2193–2198

    Article  CAS  PubMed  Google Scholar 

  3. O’Neill JS, Lee KD, Zhang L, Feeney K, Webster SG, Blades MJ, Kyriacou CP, Hastings MH, Wilcockson DC (2015) Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Curr Biol 25:R326–R327

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sbragaglia V, Lamanna F, Mat M, Rotllant G, Joly S, Ketmaier V, de la Iglesia HO, Aguzzi J (2015) Identification, characterization, and diel pattern of expression of canonical clock genes in nephrops norvegicus (Crustacea: Decapoda) eyestalk. PLoS ONE 10:e0141893

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang L, Hastings MH, Green EW, Tauber E, Sladek M, Webster SG, Kyriacou CP, Wilcockson DC (2013) Dissociation of circadian and circatidal timekeeping in the marine crustacean Eurydice pulchra. Curr Biol 23:1863–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hut RA, Kronfeld-Schor N, Van der Vinne V, de la Iglesia HO (2012) In search of a temporal niche: environmental factors. Prog Brain Res EBRS:1–27

    Google Scholar 

  7. Daan S, Merrow M, Roenneberg T (2002) External time – internal time. J Biol Rhythm 17:107–109

    Article  Google Scholar 

  8. Johnson CH (1999) Forty years of PRC’s-what have we learned? Chronobiol Int 16:711–743

    Article  CAS  PubMed  Google Scholar 

  9. Aschoff J, Pohl H (1978) Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65:80–84

    Article  CAS  PubMed  Google Scholar 

  10. Pavlidis T (1967) A mathematical model for the light affected system in the Drosophila eclosion rhythm. Bull Math Biophys 29:291–310

    Article  CAS  PubMed  Google Scholar 

  11. Pittendrigh CS (1981) Circadian organisation and the photoperiodic phenomena. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol

    Google Scholar 

  12. Hut RA, van Oort BE, Daan S (1999) Natural entrainment without dawn and dusk: the case of the European ground squirrel (Spermophilus citellus). J Biol Rhythm 14:290–299

    Article  CAS  Google Scholar 

  13. Aschoff J (1979) Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z Tierpsychol 49:225–249

    Article  CAS  PubMed  Google Scholar 

  14. Daan S (2000) Colin Pittendrigh, Jürgen Aschoff and the natural entrainment of circadian systems. J Biol Rhythm 15:195–207

    Article  CAS  Google Scholar 

  15. Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency. J Comp Physiol A 106:223–252

    Article  Google Scholar 

  16. Wever RA (1966) Ein mathematisches Modell für die circadiane Periodik. Z Angew Math Mech Sonderheft 46:148–157

    Article  Google Scholar 

  17. Beersma DGM, Daan S, Hut RA (1999) Accuracy of circadian entrainment under fluctuating light conditions: contributions of phase and period responses. J Biol Rhythm 14:320–329

    Article  CAS  Google Scholar 

  18. Comas M, Beersma DG, Spoelstra K, Daan S (2006) Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J Biol Rhythm 21:362–372

    Article  CAS  Google Scholar 

  19. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073

    Article  CAS  PubMed  Google Scholar 

  20. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497:326–349

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD (1998) Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95:340–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD (2000) A novel human opsin in the inner retina. J Neurosci 20:600–605

    CAS  PubMed  Google Scholar 

  24. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. Nature (London) 415:493–493

    Article  CAS  Google Scholar 

  25. Adewoye AB, Kyriacou CP, Tauber E (2015) Identification and functional analysis of early gene expression induced by circadian light-resetting in Drosophila. BMC Genomics 16:570

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saint-Charles A, Michard-Vanhee C, Alejevski F, Chelot E, Boivin A, Rouyer F (2016) Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light. J Comp Neurol 524(14):2828–2844

    Article  CAS  PubMed  Google Scholar 

  27. Yoshii T, Hermann-Luibl C, Kistenpfennig C, Schmid B, Tomioka K, Helfrich-Forster C (2015) Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila. J Neurosci 35:6131–6141

    Article  CAS  PubMed  Google Scholar 

  28. Merlin C, Beaver LE, Taylor OR, Wolfe SA, Reppert SM (2013) Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res 23:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haug MF, Gesemann M, Lazovic V, Neuhauss SC (2015) Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol 7:601–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC (1998) The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692

    Article  CAS  PubMed  Google Scholar 

  31. Emery P, Stanewsky R, Helfrich-Forster C, Emery-Le M, Hall JC, Rosbash M (2000) Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26:493–504

    Article  CAS  PubMed  Google Scholar 

  32. Emery P, Stanewsky R, Hall JC, Rosbash M (2000) A unique circadian-rhythm photoreceptor. Nature (London) 404:456–457

    Article  CAS  Google Scholar 

  33. Sosniyenko S, Hut RA, Daan S, Sumova A (2009) Influence of photoperiod duration and light-dark transitions on entrainment of Per1 and Per2 gene and protein expression in subdivisions of the mouse suprachiasmatic nucleus. Eur J Neurosci 30:1802–1814

    Article  PubMed  Google Scholar 

  34. Meireles-Filho AC, Kyriacou CP (2013) Circadian rhythms in insect disease vectors. Mem Inst Oswaldo Cruz 108(Suppl 1):48–58

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gerkema MP, Davies WI, Foster RG, Menaker M, Hut RA (2013) The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc Biol Sci 280:20130508

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roelof A. Hut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Floessner, T., Hut, R.A. (2017). Basic Principles Underlying Biological Oscillations and Their Entrainment. In: Kumar, V. (eds) Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3688-7_3

Download citation

Publish with us

Policies and ethics